
Riemann Surfaces

LAWRENCE VU

In this note, I am going to recall a bit of
the theory of Riemann surfaces. Familiar-
ity with sheaf, algebraic/differential geometry
and complex analysis is assumed.

1. The objects

The theory of Riemann surface is basically
1-dimensional C-version of differential geom-
etry so if you are familiar with differential ge-
ometry, you should be able to formulate part
of the theory.

Definition 1.1. A Riemann surface is a one
dimensional smooth complex manifold.
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More concretely, a Riemann surface

R = (R; {(Uα, zα)}α∈I)
consists of

• a connected complex manifold R;
• an open covering {Uα}α∈I of R where I is

some indexing set; and
• homeomorphism zα : Uα → Vα where Vα is

open subset of C
such that for every α, β ∈ I such that Uαβ :=
Uα ∩ Uβ 6= ∅, the transition maps

zβ ◦ z−1α : zα(Uαβ)→ zβ(Uαβ)

and zβ◦z−1α are (the usual) holomorphic func-
tion (from open subset of C→ C).

Such a collection (Uα, zα)α is called a coor-
dinate chart on R.

Remark 1.2. Think of zα as coordinate func-
tion or as the “complex variable” on Uα. An
alternative way to define a Riemann surface
is a collection {(Vα, Vαβ, tαβ)} where Vαβ ⊂



Riemann Surfaces 3

Vα ⊆ C are open in C and tαβ : Vαβ → Vβα are
holomorphic transition maps. Then we can
build a surface R =

⊔
Vα/ ∼ where Vα and

Vβ are glued along their subset Vαβ ↔ Vβα.

Example 1.3. Any connected open subset U
of C, in particular the upper half plane

H := {z ∈ C|=(z) > 0}

or the whole C, is a Riemann surface with
chart {U, Id}.

Example 1.4. A basic non-trivial example
of Riemann surfaces is the Riemann sphere
P1
C = C ∪ {∞} whose chart consists of

U0 = C
z0 = Id : z 7→ z
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and

U1 = P1
C − {0} = C× ∪ {∞}

z1 : z 7→

{
1
z

if z ∈ C×,
0 if z =∞.

From now on, when we refer to C or H or
P1
C, the Riemann surface structure is implic-

itly understood to be from the above exam-
ples.

Definition 1.5. Two charts (Uα, zα) and (U ′i , z
′
i)

for a surface R are equivalent if their union
also forms a chart for R.

Two Riemann surface with equivalent chart
are considered to be the same object.

Exercise 1. Show that any Riemann surface
has a maximal chart and that chart is unique.

Remark 1.6. A chart can have repetition.
All it takes for (U, z) and (U,w) to be in the
same chart is that w ◦ z−1 is holomorphic!
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The maximal chart has a lot of such rep-
etition. Many results can be proved by lo-
cal analysis: taking an arbitrary local chart
(U, z) in the maximal chart and consider the
classical complex analytic object locally on
z(U).

2. The morphisms

Definition 2.1. Let U ⊂ R be open. A func-
tion f : U → C is called holomorphic1 if and
only if f ◦ z−1α : zα(U ∩ Uα) → C is holomor-
phic for all α.

We denote by OR(U) the ring of all holo-
morphic functions on U .

1I should define only holomorphic functionR → C;
since any open subset U ⊂ R inherits the charts from
R and thus is automatically a Riemann surface.
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Note that OR(U) ⊂ CR(U) where CR(U)
denotes the ring of all continuous2 functions
U → C.

Remark 2.2. In term of “data”, a holomor-
phic function f is a collection of (usual com-
plex) holomorphic functions fα(zα) : Vα → C
satisfying the compatibility condition (a.k.a.
sheaf condition) i.e. such that fα ◦ z−1α =
fβ ◦ z−1β when restricting to Uαβ.

The analogy with algebraic geometry is to
give a global section Γ(X,F) on a sheaf F is
the same as giving a collection of compatible
local sections sα ∈ Γ(Uα,F) for an open cover
{Uα} of X.

As illustration, to give a holomorphic func-
tion on P1

C is the same as giving two holo-
morphic functions f0, f1 : C → C such that
f0(z) = f1(

1
z
) for all z 6= 0. (From here, it

2CR(U) does not depend on R; we just add it for
clarity.
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should be obvious that the only holomorphic
functions on P1

C are constants.)
For future reference, to save time, we intro-

duce many notions (e.g. differential forms,
divisors, etc.) in term of a chart; which is
essentially defining a section of a sheaf (e.g.
sheaf of differential forms, sheaf of divisors,
etc.) explicitly by gluing local sections. To
put it another way, we define many sheaves
F = O,K, ... by gluing smaller sheaves Fα on
a covering Uα. Now, a problem that arised is
one needs to have a way of relating sections
describing via different covering; for one open
set can have many covering. For instance, if
U =

⋃
Uα =

⋃
Vi then (Uα, sα) could give

the same section on U as (Vi, ti): they are
the same exactly when they are compatible
i.e. {Uα} ∪ {Vi} also works. So we define two
objects (defined with charts) to be equivalent
if their combination is also an object. For in-
stance, if ω = (Uα, zα, fα) and ω′ = (Vi, wi, gi)



8 LAWRENCE VU

are differentials then ω is equivalent to ω′ if
their union is also a differential.

We can relativize the concept of holomor-
phic functions, which we typically refer to as
holomorphic maps:

Definition 2.3. Let R,R′ be Riemann sur-
faces. A continuous map F : R → R′ is
holomorphic if and only if

F ∗U(OR′(U)) ⊆ OR(F−1(U))

for every open U ⊂ R′.

Here, the natural pull-back map

F ∗U : CR′(U)→ CR(F−1(U))

is given by ϕ 7→ ϕ ◦ F .
With the last definition, we have a cate-

gory of Riemann surfaces whose morphisms
are holomorphic maps. As a remark, a holo-
morphic function R → C in Definition 2.1 is
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a holomorphic map R → C in Definition 2.3
where C is viewed as a Riemann surface!

Exercise 2. Show that holomorphic function
doesn’t depend on the choice of an equivalent
chart3. In other words, if (Uα) and (Vi) are
equivalent chart on R then f is holomorphic
with respect to (Uα) if and only if it is holo-
morphic with respect to (Vi).

Exercise 3. Verify that (R,OR) is a ringed
space. In particular, OR is a sheaf of rings on
R. Verify that similar constructions CR, C∞
also defines sheaves: this should be obvious
since our sections are functions and restric-
tions are restriction of functions.

Also, suppose that (Uα, zα) is a chart. Show
that the sheafOR could be obtained by gluing
the sheaves Oα on Uα where for any U ⊆ Uα

3Because of this, an alternative way of defining a
Riemann surface is as a complex manifold + a sheaf
of holomorphic function.
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open, Oα(U) is the ring of (usual) holomor-
phic functions on zα(U) ⊆ C.

Exercise 4. What are the stalksOP as rings?
(Answer: Observe that a stalk at P is a lo-
cal object i.e. only depend on a chart at P .
Let (U, z) any chart with P ∈ U ; then any
other stalk [V, f ] ∈ OP can be identified with
[V ∩ U, f |V ∩U ] ∈

⋃
P∈W⊂U OP (W ). Then a

holomorphic function at P can be identified
with a power series

∑∞
n=0 an(z − z0)

n where
z0 = z(P ) having positive radius of conver-
gent. Thus, OP can be identified with the
subring of the power series ring C[[z]] con-
sisting of those with positive radius of con-
vergence.)

With this, we can easily define the notion of
meromorphic function onR to be holomorphic

function R → P1
C that is not constant ∞ and

likewise meromorphic maps R → R′ between
two Riemann surfaces. Similar to the sheaf
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OR, we have a sheaf KR where KR(U) is the
field4 of meromorphic functions on U .

Exercise 5. Define meromorphic function us-
ing chart. Be careful here that meromorphic
function (when viewed as C-valued function)
are NOT defined on the whole surface! Prove
that the above definition is equivalent to it.

Exercise 6. What are the stalks of K? (An-
swer : Field of fractions of OP .)

Show that there is an exact sequence

0→ O×P → K
×
P → Z→ 0

where the second map returns the order of
vanishing of f at P .

Exercise 7. Verify that K(U) is a field if U
is connected.

4A field only when U is connected! Otherwise, it
is product of fields.
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3. Simply connected Riemann
surfaces

It is well-known from topology that every
(reasonable) space has the universal covering
space. For every Riemann surface R, its uni-

versal covering space R̃ has a natural struc-
ture of a Riemann surface. Thus, we want
to classify all simply connected Riemann sur-
face.

Theorem 3.1 (Uniformization). There are
only three simply connected Riemann surface
(upto isomorphism): the complex plane C, the
Riemann sphere P1

C and the upper half plane
H.

The Riemann surface structures are as in
previous examples. Note in particular that
the theorem implies that there is no other
Riemann surface structures on these spaces.

It follows then that any Riemann surface
is the quotient of its universal covering space
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(one of P1
C,C,H) by a group, namely its fun-

damental group5. (See [6], Chapter I, Sec-
tion 1.2 for some basic facts about topological
group actions.)

Exercise 8. This exercise is to review simple
results from general topology.

(i) Prove that connected + locally path con-
nected ⇒ path connected.

(ii) On a path connected space X, recall
that the fundamental groups

π1(X, x0) ∼= π1(X, x1)

for any x0, x1 ∈ X. (Proposition 1.5 of
[4].)

(iii) Find the natural action of π1(X, x0) on

the universal cover X̃. (Use results of
Section 1.3 in [4]. In fact, recall that the

points of X̃ are paths γ on X starting

5Think of the circle as quotient R/Z where R is its
universal cover and Z is its fundamental group!
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from x0 up to homotopy so the natural
action is simply path concatenation!)

(iv) Deduce that X ∼= X̃/π1(X, x0).

Recall from basic complex analysis (see [1])
that H is bi-holomorphic to the unit disk and
that its automorphism group (in the category
of Riemann surfaces) is precisely the group
of real Möbius (i.e. linear fractional) trans-
formation PSL2(R) = SL2(R)/±I (Theorem
1.1.3 of [6], essentially Schwarz lemma); in
other words and more generally, the group
GL2(R)+ acts on H naturally by linear frac-
tional transformations

(3.1)

(
a b
c d

)
· z :=

az + b

cz + d
.

This action is transitive as

1
√
y

(
y x
0 1

)
· i = x+ iy.
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(Note: We have

(
y x
0 1

)
∈ GL2(R)+ because

x+ iy ∈ H.)
This allows us to identify

SL2(R)/SO2(R) ∼= H

as smooth manifold since SO2(R) = SL2(R)i
is the isotropy group of i (via Theorem 1.2.1
of [6]).

From SL2(R) being Lie group, H should
have a Haar measure i.e. Aut(H)-invariant
volume form. It also have an Aut(H)-invariant
metric. We will talk about geometry on H in
a different note.

Exercise 9. What are the automorphism groups
of the other simply connected Riemann sur-
faces i.e. C and P1

C? (Answer : Aut(C) =
{z 7→ az + b|a, b ∈ C} and Aut(P1

C) = PSL2(C).)
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Exercise 10. Verify that (3.1) defines a group
action; in particular, it is well-defined γz ∈ H
if z ∈ H.

It follows from the determination of auto-
morphism groups that Riemann surfaces whose
universal cover is H is isommorphic to H/Γ for
some subgroup Γ ⊂ PSL2(R).

4. Compact Riemann Surface

Compact Riemann surfaces have a good the-
ory. It was attributed to Riemann that

Theorem 4.1 (Riemann’s Existence Theo-
rem). Any compact Riemann surface is a pro-
jective variety (an algebraic curve).

According to Hartshorne, Riemann’s first
step of the proof is to show that there ex-
ists a non-constant meromorphic function on
a compact Riemann surface (hence the name
“Existence Theorem”). Afterwards, we have
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from algebraic geometry that a smooth pro-
jective curve is completely determined by its
function field.

Let K(R) denote the field of meromorphic
function on R. Thanks to Theorem 4.1, this
is a field extension of C of transcendance de-
gree 1. Hence, if ϕ ∈ K(R) is non-constant
i.e. ϕ 6∈ C then ϕ is transcendental and
K(R)/C(ϕ) is a finite extension whose degree
is exactly the number of zeros (with multiplic-
ity) of ϕ; or equivalently, the number of poles
(c.f. equation (1.8.6) in [6]).

Remark 4.2. It should not be hard to see
the reason for the above statement: The field
injection C(ϕ) → K(R) gives rise to ratio-
nal map R → P1

C. Then the number of poles
can be viewed as the number of pre-images
of ∞ ∈ P1

C and the number of zeros is just
the number of pre-images of 0 ∈ P1

C. These
number are equals; for we expect the number
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of pre-images of any other point on P1
C is the

same. This common number is typically de-
fined as the degree of the covering R → P1

C in
differential geometry or topology.

Theorem 4.3 (Hurwitz’s Formula). Let R
and R′ be compact Riemann surfaces of [topo-
logical] genus g and g′ respectively and let F :
R′ → R is a degree n covering. Then

2g′ − 2 = n(2g − 2) +
∑
P∈R′

(eP,F − 1).

Here, the degree of a covering can be deter-
mined algebraically as follow: as with before,
the pull-back map F ∗ : K(R) → K(R′) de-
fine a field homomorphism so K(R′) is a field
extension of K(R). The degree of the cov-
ering is exactly the degree of this extension.
(This should be the same as the analytic defi-
nition of degree; via integration using volume
form for instance.)
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The numbers eP,F ’s are ramification index
at the point P ∈ R′ i.e. the multiplicity of the
point P lying above F (P ); and is defined as
the order of the (usual) meromorphic function
z ◦ F ◦ w−1 : w(U) → V at w(P ) ∈ C if
we choose local chart (V, z) in R′ at F (P )
and local chart (U,w) in R′ at P such that
U ⊂ F−1(V ).

5. Differential Forms

One can talk about 1-form (or n-forms)
on Riemannian manifold as in differential ge-
ometry. One can give a sheaf-like definition
but this requires redoing differential geome-
try (tangent space, cotangent space, exterior
product, etc.); see [2], Chapter I, Section 9
for the details. To save time here, let me do
it concretely in term of charts which is again
just describing a global section from compat-
ible local sections.
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Definition 5.1. A holomorphic (meromor-
phic) degree-k differential (a degree-k 1-form)
on an open subset U ⊂ R,

ω = (Uα, zα, fα)

consists of

• a coordinate chart (Uα, zα) covering U ; and
• a collection (fα : Uα → P1

C) of holomorphic
(meromorphic, resp.) functions such that
(the sheaf condition)

fα(P )

(
dzα
dzβ

)k
(P ) = fβ(P )

holds for every P ∈ Uαβ.

If you rearrange the equation “formally”, it
becomes more mnemonic

fα(dzα)k = fβ(dzβ)k

but bear in mind that we do not have any
formal treatment of fα(dzα)k! So in analogy
with the concept of “holomorphic functions”,
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a differential is just a bunch of fα(dzα)k sat-
isfying compatibility (i.e. sheaf) conditions.

Remark 5.2. The equation in Definition 5.1

needs some clarification on the term
(
dzα
dzβ

)k
(P ).

Here, let

Vβ := zβ(Uβα) ⊂ C
Vα := zα(Uαβ) ⊂ C

Note that P = zβ(w0) for some w0 ∈ Vβ.
Then we have transition map

t := zα ◦ z−1β : Vβ → Vα

and then(
dzα
dzβ

)k
(P ) := (t′(w0))

k ∈ C.

Remark 5.3. A degree-1 differential is an 1-
form in differential geometry

(Uα, zα = xα + iyα, fα dxα + gα dyα)
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satisfying some equations indicating that it is
“meromorphic”. (See [2] for details. As an
analogy, observe that a holomorphic function
are basically a pair of C∞ function satisfy-
ing Cauchy-Riemann equation.) The number
(t′(w0)) in previous remark is nothing other
than the transition requirement enforced by
the Jacobian.

Denote Dk(R) the C-vector space of degree
k differentials. Observe that

(i)
⊕

k∈ZD
k(R) is a graded ring where sum

and product are chart-wise;
(ii) if ω = (Uα, zα, fα) ∈ Dk(R) is non-zero

then

ω−1 = (Uα, zα, f
−1
α ) ∈ D−k(R);

(iii) D0(R) = K(R) and there is differenti-
ation D0(R)→ D1(R) given by

ϕ = (ϕα) 7→ dϕ :=

(
dϕα
dzα

)
;
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(iv) Dk(R) are 1 dimensional K(R) vector
spaces (assuming that R is compact):
Since D0(R) = K(R) is field extension
of C of transcendence degree 1, pick any
non-constant ϕ ∈ K(R) and we find
that 0 6= (dϕ)k ∈ Dk(R). Then for any
ω ∈ Dk(R), we find that ω(dϕ)−k ∈
D0(R). Hence,

ω ∈ K(R)(dϕ)k

or in other words,

Dk(R) = K(R)(dϕ)k

is an one dimensionalK(R) vector space.

6. Divisors

Definition 6.1. A divisor is a global section
of the sheaf K×/O×.

Remark 6.2. Again, we could describe a di-
visor as D = (Uα, zα, fα) with fα ∈ K×(Uα)
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and if Uαβ 6= ∅ then there exists a holomor-
phic function g ∈ O×(Uαβ) such that 1

g
is also

holomorphic and fα = gfβ on Uαβ. In other
words, fα/fβ has neither pole nor zero in Uαβ.

The reason K×/O× comes up is because it
sits in the exact sequence

0→ O× → K× → K×/O× → 0.

And we are interested in sheaf cohomology
H1(R,O×), which is important in the theory
of Riemann surface.

6.1. Interpretation. I shall give some inter-
pretation for the notion of divisors.

On a compact Riemann surface, there is
an alternative (and more familiar) method to
give divisors: as finite formal sum

∑
nP · P .

The idea is that the stalks (K×/O×)P =
K×P /O

×
P could be easily determined to be Z

(via the previous exercises) and so a section
can be view as a mapping R → Z. Now
due to compactness, we must have finitely
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many non-zero since a meromorphic function
on a compact R can only have finitely many
poles/zeros.

Alternative, by the interpretation in the
remark and the fact that any cover reduces
to a finite cover, one sees that there is a fi-
nite set (U1, z1, f1), ..., (Un, zn, fn) that deter-
mines the divisor. Since meromorphic has
same poles as zeros (with multiplicity), one
has

∑
nP = 0.

6.2. Divisor associated to a differential.

7. Final Exercise

Exercise 11. Read Ahlfors’ [1] and Forster’s
[2] and many other books like [3] to learn Rie-
mann surfaces properly. Miyake [6] refers to
Lang [5] for a treatment of Riemann surface.
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