
Modular Forms and Complex
Analysis II

LAWRENCE VU

In this note, we are going to introduce the
modular curves and give an interpretation of
modular forms as differential forms on mod-
ular curves. With this geometric interpreta-
tion, we can find the dimension of the space
of modular forms using Riemann-Roch theo-
rem.

1. Modular Curves

Fix Γ and denote the Γ-extended upper half
plane

HΓ := H ∪ {cusps of Γ}.
1
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(Many authors denote H∗ for HΓ but I don’t
like this since it doesn’t highlight the depen-
dency of H∗ on Γ.)

Definition 1.1. The modular curve of level
Γ is the quotient

XΓ := HΓ/Γ.

We also denote

YΓ := H/Γ.

We also denote X�(N) := XΓ�(N) where �
can be 0, 1 or nothing.

At this point, XΓ is just a set. We are going
to introduce a topology as well as a complex
chart to make it into a Riemann surface.

1.1. Topology on HΓ. We take a basis for
the topology on HΓ consisting of

• Usual fundamental system of neighborhood
for each point z ∈ H; and



Modular Forms and Complex Analysis II 3

• At each cusp x, pick σ ∈ SL2(R) such that
σx = ∞ and take {σ−1U∗l l > 0} ∩ HΓ as
basic open sets where

U∗l := {z ∈ H =(z) > l} ∪ {∞} .

(Note that the {U∗l } forms a system of neigh-
borhood of ∞ should it be a cusp of Γ.)

Exercise 1. Show that HΓ is Hausdorff with
this topology.

With the topology on HΓ, we have the nat-
ural quotient topology on XΓ.

Exercise 2. (i) Show that if a group G
acts properly discontinuously on a Haus-
dorff space X then X/G is Hausdorff.
(Recall that G acts properly discontin-
uously on X if for any two points x, y ∈
X including x = y, there exists neigh-
borhood U 3 x, V 3 y such that

{g ∈ G gU ∩ V 6= ∅}
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is finite. In words, V intersects only
finitely many G-translates of U .)

(ii) Show that XΓ is Hausdorff.

Exercise 3. Is it possible to make HΓ into a
Riemann surface?

1.2. Modular curve as Riemann surface.
Now we introduce a Riemann surface struc-
ture on XΓ.

Let π = πΓ : HΓ → XΓ be the projection
map and recall that the topology on XΓ is the
finest one such that π is continuous.

We call a point P ∈ XΓ an elliptic point,
a cusp or an ordinary point if P = π(τ) and
τ ∈ HΓ is correspondingly an elliptic point, a
cusp or otherwise.

A chart on XΓ is given by (UP , zP )P∈XΓ

where

(i) We pick a representative τP ∈ HΓ (a lift
of P ) for each P ∈ XΓ. We will drop
the subscript if there is no confusion.
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(ii) If P is an ordinary point, let Vτ ⊂ H be
neighborhood of τ such that

γVτ ∩ Vτ 6= ∅ ⇒ γ ∈ {±I} = ±Γτ .

Such U exists due to Γ acting properly
discontinuously on HΓ. (Note that ±I
gives the same identity action on HΓ.)

We take

UP = π(Vτ )

and

zP = π−1 : UP → Vτ

as the coordinate chart at P .
(iii) For every elliptic point P , let ρ ∈ SL2(C)

be the Möbius transformation of H to
the unit disk D1 such that τ 7→ 0.

Recall that Γτ is finite cyclic group.
So is ρΓτρ

−1 ⊂ Aut(D). Consequently,
elements of ρΓτρ

−1 are all rotations of
angle 2πn

e
where e is the order of the

group.
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Again, using the properly discontin-
uously action, we pick sufficiently small
radius r < 1 such that the pre-image
(under ρ) of the disk of radius r, namely

Dr := {z ∈ C |z| < r}
gives rise to neighborhood Vτ = ρ−1(Dr) ⊂
H such that

γVτ ∩ Vτ ⇒ γ ∈ Γτ .

Then we take UP = π(Vτ ) and

zP : UP → Dre

as the composition of homeomorphisms

UP → Γτ\Vτ → ρΓτρ
−1\Dr → Dre

where the last map is raising to power
e i.e. w 7→ we.

(iv) If P is a cusp, let σ ∈ SL2(R) be such
that στ =∞.

As before, we choose l sufficiently large
so that the neighborhood Vτ = σ−1U∗l
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satisfies

γVτ ∩ Vτ ⇒ γ ∈ Γτ .

(Recall that Γτ is essentially infinite cyclic.)
Then we take the chart UP = π(Vτ )

and

zP : UP → Dr

as composition

UP → Γτ\Vτ → σΓτσ
−1\U∗l → Dr

where the last map is z 7→ e2πiz/h if z ∈
U∗l − {∞} and 0 for ∞; just to get us
from U∗l = {z ∈ C|=(z) > l} ∪ {∞}
which is not a subset of C to some disk
Dr ⊂ C.

So to sum up, we choose a neighborhood
Vτ so that

γVτ ∩ Vτ 6= ∅ ⇒ γ ∈ Γτ

and then set UP := π(Vτ ) and the map zP
appropriately.
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We are going to be interested in Fuchsian
groups Γ so that XΓ is compact (and hence,
admits good Riemann surface theory). Such
Γ are called Fuchsian group of the first kind.
A worthy to mention result is that

Theorem 1.2 (Siegel, Theorem 1.9.1 in [1]).
A Fuchsian group Γ is of the first kind if and
only if the (hyperbolic) volume of XΓ is finite.

Exercise 4. What are all the matrices in
SL2(C) that maps H to the unit disk? De-
termine explicitly the one that maps τ to 0
for any τ ∈ H. (Answer : The matrix(

1 −i
1 i

)
︸ ︷︷ ︸
H→D1 i 7→0

(
1√
=(τ)

0

0
√
=(τ)

)(
1 −<(τ)
0 1

)
︸ ︷︷ ︸

H→H τ 7→i

should work.)

Exercise 5. Most books don’t do this but
show that the chart just defined is a valid
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chart and define a Riemann surface structure
on XΓ. (Answer : We need to show that if
P,Q ∈ XΓ such that UPQ = UP ∩ UQ 6= ∅
then the transition map

zP (UPQ)→ zQ(UPQ)

is holomorphic. This problem is local so we
reduce to the case where Q ∈ UP . If P is
ordinary, Q must be ordinary as well since
VτP ⊂ H consists of ordinary points; and let
τ ′Q be the pre-image of Q in VτP then we have
τ ′Q = γ(τQ) for some γ ∈ Γ since both rep-
resents Q and the transition map is exactly
given by γ, which is holomorphic. If P is an
elliptic point, then the transition is a compo-
sition of zm and SL2(C). If P is a cusp, then
it is composition of exponential, σ ∈ SL2(R)
and thus is also holomorphic. )

Exercise 6. Suppose that Γ,Γ′ are Fuchsian
groups and Γ′ is a subgroup of Γ.
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(i) Show that the natural map XΓ → XΓ′

is holomorphic.
(ii) Show that if Γ′ is of finite index in Γ

then they have the same cusps; and hence,
HΓ = HΓ′ .

(iii) Deduce from Siegel’s theorem that if Γ′

is a subgroup of Γ of finite index then
Γ is of the first kind if and only if Γ′ is.
Show that in that case the degree of the
holomorphic map XΓ → XΓ′ is exactly
the index [Γ : Γ′] where

Γ := Γ/(Γ ∩ {±I})

is the projectivization of Γ.
(Hint: the volumes differs by a factor

of [Γ : Γ′].)

Exercise 7. This exercise is to illustrate Fourier
expansion without real analysis. We consider
the case where the discrete subgroup Γ = 〈Th〉
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is the cyclic group generated by translation

matrix Th :=

(
1 h
0 1

)
for some h > 0.

(i) Show that Γ has only one cusp ∞.
(ii) Imagine what the topological space YΓ

and XΓ should look like.
(iii) Prove that the extended exponential map

qh : HΓ → D = D1

given by

qh(z) =

{
e2πiz/h if z ∈ H,

0 if z =∞.

induces a bi-holomorphic isomorphism
between the Riemann surface XΓ and
D.

(iv) As a result, deduce that if f : H→ C is
a holomorphic function that is invariant
under Γ i.e. is periodic of period h then
the function g = f ◦ q−1

h is holomorphic
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on D∗ = D− {0}. Thus let

g =
∞∑

n=−∞

anw
n

be the Laurent expansion of g at 0. Then
f = g ◦ qh has Fourier expansion

f =
∞∑

n=−∞

anq
n
h .

The meromorphicity or holomorphic-
ity of f at ∞ is precisely the behavior
of the singularity 0 ∈ D of the function
g, namely whether it is a removable sin-
gularity or a pole of g.

(v) Under the above interpretation, derive
equivalent conditions for “holomorphic
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at ∞” using Riemann’s theorem on re-
movable singularity1.

1.3. Fundamental Domain. As XΓ is the
quotient of HΓ, it is useful for computation
and intuition to have a good subset of repre-
sentatives for points in XΓ.

Definition 1.3. A connected domain F ⊂ H
is called a fundamental domain of Γ if

(i) H =
⋃
γF ;

(ii) F = U where U is the interior of F i.e.
F is closed;

(iii) γU ∩ U = ∅ for any γ ∈ Γ, γ 6= ±I.

The existence of fundamental domain was
proved in Section 1.6 of [1]. The idea was
similar to how one find fundamental domain
of SL2(Z); namely, somehow pick an optimal

1For instance, 0 is removable singularity ⇐⇒
g(w) is bounded near 0; translate this to condition
on f gives ...
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representative. Except that in general, one
has to use the geometry of H: Pick a non-
elliptic point z0 ∈ H and add geodesics start-
ing from z0. More precisely,

F :=

{
z ∈ H

d(z, z0) ≤ d(z, γz0)
for all γ ∈ Γ

}
is a fundamental domain of Γ. Here, d de-
notes Poincare metric (hyperbolic distance)
on H. Basically, amongst all representatives,
we choose the one closest to z0.

This construction has several other proper-
ties:

(i) geodesic between any two points in F
lies in F ;

(ii) for any γ ∈ Γ− {±I}, Lγ := F ∩ γF is
contained in Cγ := {z|d(z, z0) = d(z, γz0)}
and if Lγ 6= ∅ then it is a singleton or a
geodesic;
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• Let me recall that a geodesic on H is
either a vertical line or a semi-circle
orthogonal to the real axis.
• We call Lγ a side of F if Lγ 6= ∅ and

not a singleton. Note that the sides
make up the boundary of F .
• If L,L′ are two sides and L ∩ L′ 6=
∅ then the point in the singleton set
L ∩ L′ is called a vertex of F .
• If L has no end, we call the intersec-

tion of L and R ∪ {∞} a vertex of F
(and end point of L) on R ∪ {∞}.

(iii) for any compactM ⊂ H, {γ ∈ Γ M ∩ γF 6= ∅}
is finite;

(iv) if a vertex x ∈ R ∪ {∞} of F is an end
of two distinct sides and x is fixed by a
non-scalar element of Γ then x is a cusp
of Γ.

(v) If Γ is of the first kind, then any vertex
of F on R∪{∞} is a cusp of Γ and any



16 LAWRENCE VU

cusp of Γ is equivalent to a vertex of F
on R ∪ {∞}.

One utility of a fundamental domain is that
it makes it easy to pick or visualize a chart:

• If a point on XΓ comes from a point in the
interior of F , then we can take a disk in
F and the chart is “identity” map. (That
said, an interior point cannot be a cusp or
elliptic point. For then we have Γτ ⊂ {±I}
by definition of fundamental domain and
so τ is not fixed by an elliptic or parabolic
element.)
• If a point on a side (boundary) is ordinary,

then it will be identified with another point
and basically, it is just two half-disks join-
ing together.
• In the case we are interested in i.e. Γ is of

the first kind, cusps are just vertices of the
fundamental domain on R ∪ {∞}.
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Exercise 8. A fundamenetal domain for Γ =
SL2(Z) is well-known to be

F =

{
z ∈ H; |z| ≥ 1 and − 1

2
≤ <(z) ≤ 1

2

}
.

(i) Verify that fact.
(ii) From this fundamental domain, what is

YΓ and XΓ topologically?
(iii) What are the sides of F and their end-

points? What are the vertices of F?

2. Modular function of Weight 0
are functions on XΓ

A modular function f of weight 0 and level
Γ satisfies the functional equation

f(γτ) = f(τ)

for every γ ∈ Γ. Thus, it induces a meromor-
phic function

f : XΓ → C
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where we send P 7→ f(τ) if P = π(τ) and
τ ∈ H and if P = π(x) is a cusp, we send
P to the value of f at the cusp i.e. the a0

coefficient in the Fourier expansion of f at
the cusp x (or ∞ if f is not holomorphic at
the cusp x). We need to show that this is
well-defined.

Exercise 9. Show that the value of f at the
cusp x is independent of the choice of the ma-
trix σ that sends x to ∞.

Proof. It is easy to reduce the problem to
x simply be ∞. Then a matrix in SL2(R)

fixing ∞ is of the form σ =

(
a b
0 a−1

)
for

a ∈ R×, b ∈ R. We have to show that

lim
z→i∞

f(z) = lim
z→i∞

f(σz).
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One has

lim
z→i∞

f(σz) = lim
z→i∞

f

(
az + b

a−1

)
= lim

z→i∞
f(a(az + b))

= lim
z→i∞

f(a2z + b)

Note that as z 7→ +i∞, we also have a2z +
b → +i∞ because a2 > 0 (albeit on a dif-
ferent path). Thus, we obtain the equality of
limits. �

Conversely, a meromorphic function on XΓ

gives rise to a modular function of weight 0 by
composition with the quotient map π : H →
XΓ.

Thus, there is a one-to-one bijection be-
tween the field of meromorphic function on
XΓ and modular function of weight 0 and
level Γ:

K(XΓ) ∼= A0(XΓ).
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A modular form of weight 0 can similarly
be interpreted as a holomorphic modular func-
tion on XΓ i.e.

O(XΓ) ∼= M0(XΓ).

The concept of modular form of weight 0 is
not very interesting; as the exercise shows.

Exercise 10. Prove that if XΓ is compact
then there is no non-constant modular form
of weight 0.

Proof. A meromorphic function has the same
number of poles as zeros. A non-constant
holomorphic function between compact Rie-
mann surface has to be surjective; in particu-
lar, non-constant XΓ → P1

C must obtain some
zero and pole. �
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3. Modular functions and modular
forms of even weight

Suppose that f is a modular function of
weight 2. I shall show that

ω := (UP , zP , ϕP )P∈XΓ

where

ϕP (Q) := f(π−1(Q))

(
d(zP ◦ π)

dz

∣∣∣∣
π−1(Q)

)−1

=

f(z−1
P (Q)) if P ∈ π(H),

f(z−1
P (Q))

(
d(qh◦σ)
dz

)−1

otherwise

is a (meromorphic) differential of degree 1 on
XΓ. The derivative is simply the derivative
appearing above is simply of the function on
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the lower row

HΓ
π // XΓ

zP

$$
Vπ−1(P )

// UPoo // WP

where π−1(P ) is the chosen image of P in the
chart and Vπ−1(P ) ⊂ HΓ is the chosen open
subset in the chart. Basically, we want to
push forward the differential form f(z)dz on
H to XΓ; but unfortunately, forms can only
be pull-backed.

By definition, we have to check that for any
two points P,Q ∈ XΓ and any point T ∈
UP ∩ UQ then

ϕP (T )

(
dzP
dzQ

)
(T ) = ϕQ(T ).(3.1)

Observe that (3) is totally local on T . This
allows us to show (3) by connecting it via UT ;
namely, if it is true for any P,Q, T then it



Modular Forms and Complex Analysis II 23

must be true when we apply it to (P,Q, T ) =
(P, T, T ) and when (P,Q, T ) = (T,Q, T ) for
if T ∈ UP ∩ UQ then T ∈ UP ∩ UT and T ∈
UQ ∩ UT :

ϕP (T )

(
dzP
dzT

)
(T ) = ϕT (T )(3.2)

ϕT (T )

(
dzT
dzQ

)
(T ) = ϕQ(T ).(3.3)

so then multiplying and cancelling ϕT (T ) on
both sides2 we get

ϕP (T )

(
dzP
dzT

)
(T )

(
dzT
dzQ

)
(T ) = ϕQ(T )

and we see a familiar instance of the chain
rule yield (3).

So the upshot is that we only need to show
when one of the point lies in the local chart at

2This should be ok because the zero are discrete
and if two meromorphic functions agree on a dense
set then they are identical.
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the other point, say Q ∈ UP , and at T being
the former point i.e. T = Q, namely

ϕP (Q)

(
dzP
dzQ

)
(Q) = ϕQ(Q).(3.4)

Recall τP , τQ, Vτ , Vρ ⊂ HΓ be the chosen
representatives of P and Q and the neigh-
borhood in the chosen chart. Note that UP =
π(VτP ) and since Q ∈ UP , we can find τ ′Q ∈
VτP that also represents Q; thus, they must be
related by an element γ ∈ Γ, say τ ′Q = γτQ.

If P is not a cusp, the transition from VτQ →
VτP is simply given by the matrix γ; and the
equation (3.4) is simply assertion that

f(γτQ)
dγ

dz

∣∣∣∣
z=τQ

= f(τQ)

which is nothing but the functional equation
satisfied by modular functions of weight 2:

Let γ =

(
a b
c d

)
which is identified with the
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holomorphic function z 7→ az+b
cz+d

then

γ′(z) =
a(cz + d)− c(az + b)

(cz + d)2

=
ad− bc

(cz + d)2

=
1

(cz + d)2
if γ ∈ SL2(R)

If P is a cusp, the reasoning is similar and

the factor
(
d(qh◦σ)
dz

)−1

in ϕP cancel the effect

of the transition map.
We have thus verified that a modular func-

tion of weight 2 is essentially a differential of
degree 1 on the modular curve XΓ.

The same argument should work for weight
2k: A modular function of weight 2k gives
rise to a differential of degree k on XΓ. Thus,
from the general theory of compact Riemann
surfaces (i.e. assume compactness of XΓ), we
know that the modular functions of degree 2k
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are 1-dimensional vector space over the func-
tion field K(XΓ) of XΓ.

It is an easy check that the subspace of
forms (i.e. the modular functions that are
holomorphic) of weight 2k whose order of van-
ishing at all cusps ≥ k are in correspondence
with holomorphic differential of degree k. In
particular,

S2(Γ) ∼= Ω1(XΓ).

We are going to exploit this geometric in-
terpretation to compute the dimension of the
space of modular forms of even weight.
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