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One principle in mathematics is to work in the category that takes into account “the full
structure of objects”. For example, in group cohomology, we work with continuous co-chain
should the group be a topological group. In the same manner, for topological groups, we want
to study the subcategory of “continuous representations” whose objects are continuous group
homomorphism G → GLcont(V ) and for Lie groups, the (wishful) subcategory of “smooth
representations” within the category of “continuous representations”. Here, GLcont(V ) ⊂
GL(V ) is the subspace of continuous invertible linear maps V → V , which has natural
topology1 i.e. GLcont(V ) is a topolgical space so it makes sense to talk about continuous
maps. As a convention, we always assume representation to be continuous in this note since
all groups concerned are topological group.

The problem with Lie group case is that it is hard to find the right subspace GL(V ) that has
“differential” structure i.e. a closed subgroup W ⊂ GL(V ) that is also a smooth manifold as
in differential geometry. Worst, the representation space we are dealing with is V = L2(X,µ)
for certain measure space X which is supposed to be infinite dimensional2 so there is no hope
to find such W which by definition needs to be finite dimensional R-manifold, unless one
generalizes the notion of differentiability. Note that V itself doesn’t even have differential
structure so GLsmooth(V ) doesn’t make sense.

1. The case of compact Lie group

When G is compact3 Lie group, the representation theory (in the category of continuous
representations, we don’t even need extra-structure) is quite simple. Observe that

Lemma 1.1. If G is compact then the representation π is unitarizable. More generally, if
K is any compact subgroup of G then we can adjust the inner product on V so that the
restriction representation π|K is unitary representation of K.

To see that, let [, ] be the original paring on the V and we define a new paring by averaging
⟨v, w⟩ :=

∫
K
[π(k)v, π(k)w] dk. We state the following major result

Theorem 1.2 (Peter-Weyl theorem). Suppose that G is compact Lie group. Then

(i) Any irreducible unitary representation of G is finite dimensional.
(ii) The matrix coefficients (i.e. functions G → C of the form ⟨π(g)v, w⟩ for some fixed

v, w) of finite dimensional unitary representations of G are dense in C(G) and Lp(G)
for all 1 ≤ p ≤ ∞.

(iii) If π : G → GL(V ) is an unitary representation then V decomposes into a Hilbert
space direct sum of irreducible unitary sub-representations.

1As long as V is nice, I assume. The topology is called “strong operator topology” by Terry Tao in his
blog https://terrytao.wordpress.com/tag/peter-weyl-theorem/.

2Why?
3Note that “compact” is the continuous analogue of being “finite”. But I am not saying that representation

theory of finite group is simple here.
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Remark 1.3. The statement above was copied from Getz. I did a bit research on that
and I found that one proof of statement (i) doesn’t seem to require Lie group structure
https://mathoverflow.net/questions/119402/why-all-irreducible-representations-of-compact-groups-are-finite-dimensional,
only on Schur’s lemma. In other words, it applies to any compact topological group. Accord-
ing to Wikipedia, the whole Peter-Weyl theorem applies to all compact topological group,
not only compact Lie groups, as written in Getz. (If you can read German, please check the
original article by Peter and Weyl [?] to verify this claim.)

Remark 1.4. The statement of Peter-Weyl theorem is about continuous representations.
The emphasis here is it applies to all continuous representations, not only “smooth” or “ad-
missible” (to be defined) ones. I don’t think the result is true if we consider all discontinuous
representations but one should not care about those kind of representations by the principle
of mathematics.

Remark 1.5. Explicit computations in practice seem to make heavy use of the representa-
tion of the Lie algebra (see below).

TODO: Unfortunately, I don’t know how to go from representation of Lie algebra to repre-
sentation of the group. According to Wikipedia, even for finite dimensional representations,
this correspondence is not one-to-one, unless G is simply connected: There are Lie algebra
representations that do not come from Lie group representation.

Example 1.6. Let us consider the case G = SO2 = {g ∈ GL2 | ggt = I2, det g = 1} over R;
explicitly

SO2(R) =
{
Rθ =

(
cos θ − sin θ
sin θ cos θ

)
θ ∈ [0, 2π]

}
is isomorphic to a circle S1 and so is abelian. We know that irreducible representation of
abelian groups are characters. In this case, we find that irreducible unitary representations
of SO2(R) are of the form Rθ 7→ eikθ (i.e. scalar multiplication) where k ∈ Z.

2. Representation theory of Lie groups

Let G be affine algebraic group over archimedean local field F (for now, just think of
G = GLn and F = R) and π : G(F ) → GL(V ) be a representation of the Lie group G(F )
on a Hilbert space V . As usual, denote by g for the Lie algebra of G(F ). Subsequently, we
shall use G to refer to G(F ) whenever a group is expected. In this section, we describe the
passage from the (admissible) representation π to an (admissible) (g, K)-module where K is
any maximal compact subgroup of G.

2.1. Admissible Representations. Using Peter-Weyl theorem, one obtains a key idea to
study representation of G that is to see its restriction to maximal compact subgroup of G.
Let K be any maximal compact subgroup of G.
If π is a representation of G then without loss of generality (by lemma), one can assume

π|K is unitary so by Peter-Weyl theorem, it splits

π|K =
⊕

σ

where each σ are irreducible unitary (hence, finite dimensional) representation of K. Note
that the σ are allowed to repeat and the multiplicities need not be finite.



Automorphic Representations II 3

Remark 2.1. An important question is what kind of “decomposition” one can have for a
general irreducible representation π?

We define the “σ-eigenspace”

V (σ) := {v ∈ V | ⟨π(K) · v⟩ ∼= σ}
Here, the ⟨π(k) · v⟩ is the subspace spanned by π(k) · v for all k ∈ K and the isomorphism
are as representations of K. The vectors of V (σ) are said to have K-type σ and K-finite.
Note that the space of V (σ) only depends on the restriction π|K .
Definition 2.2. The representation π is admissible if V (σ) is finite dimensional for all

σ ∈ K̂.

Here, K̂ is the unitary dual of K, the set of equivalence classes of irreducible (unitary)

representations of K. For instance, we found in ?THM? ?? that ŜO2(R) ∼= Z.
Fact. There is a well-known theorem of Harish-Chandra that all unitary representation are
admissible for reductive group G.

Remark 2.3. The definition of admissible representation does NOT depend on the choice
of the maximal compact subgroup K even though the definition above makes a choice of K;
otherwise, I should have used the term “K-admissible”.

2.2. (g, K)-module. Now we define the second concept of

Definition 2.4. A (g, K)-module V is a Hilbert space V with action of g and K

π : g→ End(V ) ρ : K → GL(V )

such that

(i) V =
⊕

i Vi is a countable direct sum with each Vi finite dimensional, K-invariant;
(ii) π(X) · v = d

dt

∣∣
t=0

ρ(exp(tX)) · v for all X ∈ Lie (K); and
(iii) ρ(k)π(X)ρ(k) = π(Ad(k)X).

A (g, K)-module is called admissible if we can choose Vi to have distinct K-types.

Remark 2.5. As we noted earlier, the notion of K-type only depend on the K action on V
i.e. Vi = V (σ) only depends on the representation ρ of K in the above definition. Also, it is
evident that a (g, K)-module depends on the choice of K.

2.3. From admissible representation to admissible (g, K)-module. Let Vfin, the sub-
space of K-finite vectors, be the algebraic direct sum

Vfin :=
⊕
σ∈K̂

V (σ).

Then Vfin is an admissible (g, K)-module. (See Proposition 4.4.1 in [?].)

Fact. For the converse direction, an admissible (g, K)-module can be canonically identified
with the space of K-finite vectors of certain admissible representation of G on a smooth
Frechet space of moderate growth (theorem of Casselman and Wallach [?]).

Remark 2.6. Two admissible representations having the same (g, K)-module are called
infinitestimally equivalent. In other words, there could be in-equivalent admissible repre-
sentations leading to isomorphic (g, K)-module. But this can only happen when G is not
reductive by Harish-Chandra [?]: If G is reductive then infinitestimally equivalent represen-
tations are unitarily equivalent.
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