
ALGEBRAIC GROUPS III - LIE ALGEBRAS

LAWRENCE VU

1. Lie algebra

1.1. Some differential geometry. The concept of Lie algebra comes from differential geometry
of Lie groups i.e. groups that are also (R or C) differentiable manifolds and such that its group
operations are smooth. For notation, recall that there is a functor

T : SmoothManifolds→ VectorBundle

M 7→ TM :=
⊔
p∈M

TpM = {(p,X) | p ∈M,X ∈ TpM}

For a smooth map f : M → N between smooth manifolds, we denote f ∗ = T(f) and f ∗x =
T(f)(x) : TxM → Tf(x)N . A vector field is a smooth section X : M → TM where TM has a
canonical smooth structure1; we write Xp for X(p).

The Lie algebra of a Lie group G, typically denoted by g, is just the algebra of left invariant
vector fields of G; it comes with a Lie bracket (Lie derivative) defined by2

[X, Y ]g =
d

dt

∣∣∣∣
t=0

ϕ∗X,−t(Y ◦ ϕX,t)

= lim
t→0

ϕ∗X,−tYϕX(t,g) − Yg
t

= XY − Y X
where ϕX : R × G → G is the 1-parameter subgroup/flow associated to X parameterized by
G; we write ϕX,t = ϕX(t,−) : G → G for the induced smooth function. TODO: Check the
type correctness here! Note that for X to be left invariant, Xg = λ∗g(Xe) for all g ∈ G (where
λg : G→ G;h 7→ gh is left translation by g; we likewise denote ρg for the right translation by g) so
X is completely determined by its image Xe at the identity e ∈ G. In other words, the Lie algebra
can be identified with the tangent space at e

g = TeG ∼= RdimG or CdimG

so it is a free R (or C) module of rank dimG. It is easy to check that if X, Y are left invariant then
so is [X, Y ]. Thus, the vector field [X, Y ] is completely determined by [X, Y ]e = d

dt

∣∣
t=0

exp∗−tX(Y ◦
exptX) where expX = ϕX(1, e) : g→ G is the exponential map.

For each g ∈ G, let Ψg = ρg−1 ◦ λg = λg−1 ◦ ρg : G → G;h 7→ ghg−1 be the natural inner
automorphism of G (obviously smooth). Then G acts naturally on its Lie algebra g by g · X =
(Ψ∗g)X = ρ∗g−1 λ∗g X. This smooth action is denoted by

Ad : G→ GL(g).

Note that GL(g) is also a Lie group. Taking derivative of this smooth map at identity, we get

ad = Ad∗e : TeG→ TIGL(g)

1So that trivial projection map TM →M is smooth.
2Basically we take derivative of Y along the integral curve of X. But since Yϕt

and Yϕ0
= Yg are in different

tangent spaces, we pull Yϕt
back so we can subtract.
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and the Lie bracket can be recovered as3

[X, Y ] = ad(X)(Y ).

I think this is like embedding G → TG so that we can take second derivative in G whence
XY − Y X makes sense.

1.2. Abstract Lie algebra and the Lie functor. Now we do everything abstractly. Let k be a
ring. The references are [1], chater XI and [2], chapter 12.

Definition 1. A Lie algebra over k is a free k-module of finite rank A together with a bracket
[, ] : A× A→ A satisfying

(i) [X,X] = 0, and
(ii) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 for all X, Y, Z ∈ A.

Example 1. The matrix algebra A = Mn(k) together with the bracket defined by [X, Y ] =
XY −Y X is a Lie algebra. When k = R or k = C, we get the Lie algebra of the Lie group GLn(R)
or GLn(C).

Our goal here is to define a functor

Lie : AffAlgGroupk → LieAlgk

where if G be an affine algebraic group then as a set4,

Lie (G) := kerG(f)

Here, Dk := k[t]/(t2) is the ring of dual numbersand the map

G(f) : G(Dk)→ G(k)

is the corresponding group homomorphism

f : Dk → k [t] 7→ 0

under functoriality of G. We first need to make the set Lie (G) into a k-algebra and then we define
the bracket.

Let A := O(G) be the representing ring for G, ε : A→ k be the co-identity ring homomorphism
and I = ker(ε). (See my first note for the example for GLn.) The idea is that there is a canonical
bijection

Lie (G)↔ Homk(I/I
2, k)

and the latter already has natural k-module structure. (Note that despite being called “algebra”,
there is no natural multiplication in a Lie algebra. Certainly, one can add elements of Homk(I/I

2, k)
or multiply them with elements of k.)

3This is essentially a tautology i.e. straight-forward from the definition. To compute Ad∗e(X), we take the
flow exp(tX) in G and take derivative of the image curve Ad(exp(tX)) in GL(g) at t = 0. Now, by definition,
Ad(exptX) : Y 7→ ρ∗exp(−tX)λ

∗
exp(tX)Y and so taking derivative

d

dt
Ad(exptX) : Y 7→ d

dt
ρ∗exp(−tX) λ

∗
exp(tX) Y

= ρ∗exp(−tX) Yexp(tX) since Y is left invariant

= [X,Y ]e

by previous definition.
4According to [2], this is the analogy of the tangent space at e.
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Remark. A curious reader should ask the question “Why don’t we use this as the definition
instead?”. My best guess for reason is that the original definition is the direct analogy with our
earlier discussion on classical Lie group: The Lie algebra is identified with tangent space at identity;
think of G(Dk) as the tangent bundle TG and taking the kernel (pre-image of the identity of G(k))
as extracting the section at identity of the left-invariant vector field over G.

To see the bijection, note that G(R)↔ Homk(A,R) for any R by representability. In particular,
we have the commutative diagram

Lie (G)
OO

��

// G(Dk)
G(f)

//
OO

��

G(k)
OO

��
Some subset // Homk(A,Dk) // Homk(A, k)

where we can see that elements of Lie (G) can be identified with a natural subset of Hom(A,Dk)
whose images in Homk(A, k) is the identity element of Homk(A, k); which should obviously be ε.
Note that the map Hom(A,Dk)→ Homk(A, k) is obtained by applying the functor Homk(A,−) to
the morphism f : Dk → k so it is nothing but ϕ 7→ f ◦ϕ. Thus, to sum up to this point, elements
of Lie (G) are in one-to-one correspondence with k-algebra homomorphism A → Dk whose post-
composition with f is the co-identity ε. In other words, Lie (G) consists of all the ϕ we can fit into
the diagram (in Algk)

Dk

f

��
A

ϕ

>>

ε
// k

This diagram implies ϕ(I) ⊆ ker(f) = (t). As a result, ϕ(I2) ⊆ (t)2 = 0 i.e. I2 ⊆ kerϕ so ϕ
descends to (is completely determined as) a homomorphism A/I2 → Dk. Now A/I2 ∼= k ⊕ I/I2
by [a] 7→ (ε(a), [a − ε(a)]) so a morphism A/I2 → Dk is completely determined by its restriction
to I/I2 → k.

Exercise 1. Why is Homk(I/I
2, k) a free k-module? Why is it of finite rank?

Exercise 2. Describe morphism Lie (ψ) : Lie (G)→ Lie (H) corresponding to morphism of affine
algebraic groups ψ : G→ H.

(Note that there are two viewpoints on Lie . In the original definition, I expect that Lie (ψ) is just the restriction of

ψDk : G(Dk) → H(Dk) to the subgroup Lie (G) ⊂ G(Dk). Then as we identify Lie (G) with Homk(I/I2, k), I expect that

the map Homk(I/I2, k)→ Homk(J/J2, k) is just by composition with ψ. Here, J is the kernel of co-identity for H.)

To get the bracket, we replicate differential geometry; the only difference is that we need to
“instantiate the algebraic group to get actual groups”. We have a linear representation5

Ad : G→ GLLieG

5Note: Ad must be a natural transformation of functors; in other words, for each R ∈ Algk, we have a group
homomorphism AdR : G(R)→ GLLieG(R) and each morphism R→ R′, a certain diagram commutes.
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where for each k-algebra R, recall that (LieG)⊗R consists of maps that can be fit into the diagram

DR

fR

��
A

ϕ

77

ε
// k // R

so we can view LieG⊗R as a subset of G(DR)↔ Homk(A,DR) so that G(DR) acts naturally on
LieG⊗R by conjugation6. The canonical homomorphism hR : R→ R[t]/(t2) gives rise to a group
homomorphism G(hR) : G(R)→ G(DR) with which we obtain an action of G(R) on LieG⊗R.

Exercise 3. Check that this action preserves the Lie algebra. (Obvious since kernel is stable under
conjugation.)

Now, GLLieG = GLr is an affine algebraic group over k since LieG ∼= kr is free k-module of finite
rank r so we can apply the partially defined functor Lie to the morphism Ad of affine algebraic
groups to get a morphism

ad = Lie (Ad) : Lie (G)→ Lie (GLLieG)

of k-algebra. Finally, we can define the bracket

[X, Y ] := ad(X)(Y ).

Exercise 4. Understand identification of ad(X)(Y ) with an element of Lie (G).

Example 2. We check the case G = GLn. A matrix in G(Dk) = GLn(Dk) can be written as
X + [t]Y with X, Y ∈Mn(k). The map

GLn(Dk)→ GLn(k)

is
X + [t]Y 7→ X

so

Lie (G) = ker(G(Dk)→ G(k))

= {X + [t]Y ∈ GLn(Dk) | X = In}
= {In + [t]Y | Y ∈Mn(k)}.

(Note that the last line requires checking that all matrices of the form In + [t]Y are invertible.)

So Lie (GLn) ∼= Mn(k) ∼= kn
2
.

Now we compute the bracket. Recall that the representing ring for GLn is

A = O(GLn) = k[xij, y]/(det(xij)y − 1)

and the co-identity
ε : A→ k

is given by xij 7→ δij and [y] 7→ 1. Evidently, one has

I = ker(ε) = (xij − δij, y − 1)

i.e. the ideal of A generated by the elements xij − δij and

I2 = ((xij − δij)(y − 1), (xij − δij)(xkl − δkl), (y − 1)2)

6Unfortunately, we can’t define the action explicitly. The problem is that we need to identify the map in LieG⊗R
back to the abstract group elements in G(R) to do the conjugation.
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so I/I2 is free k-module with basis {xij − δij} of n2 elements which is isomorphic to its dual
Homk(I/I

2, k). Thus we have

Lie (GLn)↔ Homk(I/I
2, k) ∼= kn

2

.

The representation
Ad : GLn → GL(Lie (GLn)) ∼= GLn2

can be given explicitly: For each k-algebra R, one first identify Lie (GLn)⊗ R ∼= Mn(R) as subset
of Hom(A,DR) where a matrix Y ∈Mn(R) is identified with the map

ϕY : A→ DR;xij 7→ δij + [t]Yij

which can be viewed as invertible matrix (δij + [t]Yij) in GLn(DR) by representability so that any
invertible matrix g ∈ GLn(R), we define the action

g · Y = ψ−1g ϕY ψg

where ψg = g ∈ GLn(DR) but viewed as a map ψg : A → DR by ψg(xij) = gij. The right hand
side is product in GLn(DR). Of course, for this to be a genuine group action, the result must have
interpretation in Lie (GLn)⊗R ∼= Mn(R). In other words, we claim that

g(In + [t]Y )g−1 ≡ In mod (t2)

which is clear since

g(In + [t]Y )g−1 = gIng
−1 + g[t]Y g−1 = In + [t]g−1Y g

by standard property of matrix multiplication. It is also clear from this computation that this is
indeed the familiar conjugation of GLn on Mn.

Finally, we obtain
ad : Lie (GLn)→ Lie (GLn2)

by applying Lie to Ad; which is explicitly just the restriction of Ad on the kernel:

LieGLn

ad
��

// GLn(Dk)

AdDk

��

// GLn(k)

Adk
��

LieGLn2 // GLn2(Dk) // GLn2(k)

and so we recover the familiar

[X, Y ] = ad(X)(Y ) = XY − Y X.
To see that, by definition, AdDk

is obtained by embedding GLn(Dk)→ GLn(DDk
) = GLn(k[s, t]/s2, t2);X1+

tX2 7→ X1 + tX2 to let it acts on

LieGLn ⊗Dk = LieGLn/Dk
⊂ GLn(DDk

)

= {In + sY | Y ∈Mn(Dk)}
= {In + s(Y + tZ) | Y, Z ∈Mn(k)}

by conjugation. In particular, In + tX ∈ Lie (G) ⊂ GLn(Dk) action is given by

In + s(Y + tZ) 7→ (In + tX)(In + s(Y + tZ))(In − tX)

= In + s(In + tX)Y (In − tX) + st(In + tX)Z(In − tX)

= In + s((Y + tXY )− (Y + tXY )tX) + st((Z + tXZ)− t(Z + tXZ)X)

= In + sY + stXY − stY X + stZ

= In + s(Y + tXY − tY X + tZ)
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= In + s(Y + tZ + t(XY − Y X))

since (In + tX)−1 = In − tX. To sum up:

Ad(In + tX) : LieGLn/Dk
→ LieGLn/Dk

Y + tZ 7→ Y + tZ + t(XY − Y X)

View Y + tZ + t(XY − Y X) as the pair of (Y + tZ,XY − Y X) and you see that Ad(In + tX)
acts as In + t(XY − Y X). Thus, one extracts the bracket as claimed. See also Lemma 8.2 in [1].
(I should have put Z = 0 and then we see that the transformation is Y 7→ Y + t(XY − Y X) so
clearly the transformation is I + t(XY − Y X).

1.3. Other properties. The functor Lie is left exact, commutes with fiber product.
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