
ALGEBRAIC GROUPS II - BASIC CONSTRUCTIONS

LAWRENCE VU

Our goal is to import various notions in group theory such as (normal) subgroup into the theory
of algebraic groups. Since there are three definitions of algebraic groups, we likewise have various
way to define these concepts.

1. Recall: The category of group schemes

Let G = (G,mG, eG, iG) and H = (H,mH , eH , iH) be group schemes over S. A group scheme
homomorphism φ : G → H is a morphism of the underlying schemes G → H such that the
diagrams in category SchemeS (you guess it)

G×G mG //

φ×φ

��

G

φ

��
H ×H mH // H

and

G
eG //

φ

��

∗

Id

��
H

eH // ∗

commutes. With this definition of morphism, we have a category GroupSchemeS of group
schemes over S.

In the functorial definition, a morphism φ : G→ H is just a natural transformation of functors.
Concretely, for each S-scheme T , φ gives us a group homomorphism φT : G(T )→ H(T ).

Likewise, one easily comes up with a definition of morphisms between Hopf algebras.

Exercise 1. Prove that the three definitions of morphisms are equivalent.

Exercise 2 (Theorem 3.1 of [1], a criterion for representability). Let G : k-Alg → Sets be a
functor. If G is representable, then for every faithfully flat homomorphism R→ R′ of k-algebras,
the sequence

G(R)→ G(R′)⇒ G(R′ ⊗R R′)

is exact (i.e. the image of G(R) is the equalizer of the following two maps). Conversely, if there
exists a faithfully flat homomorphism k → k′ such that (a) G|k′-Alg is representable, and (b) for
all k-algebras R, the sequence G(R)→ G(Rk′)⇒ G(Rk′ ⊗Rk′) is exact then G is representable.
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2. Kernel group scheme

Now let us view G,H as functors and let φ : G → H be a morphism. Then we have a natural
kernel functor

kerφ : Schemeop
S → Groups

associated to φ where
kerφ(T ) := ker(G(T )→ H(T )).

Theorem 1. The functor kerφ is a group scheme.

Proof. Let G and H be the representing schemes of G and H respectively and let φ̃ : G→ H be the
induced morphism of schemes. It is easy to see that the fiber product (in the category of schemes)

G×H S

{{ ##
G

φ̃ $$

S

eHzz
H

represents kerφ. �

3. Subgroup scheme

In general category theory:

• A morphism f is called a monomorphism if it is left-cancellable i.e. for any morphisms g
and h, if f ◦ g = f ◦ h then g = h.
• The dual notion is epimorphism.
• A sub-object of an object A is an equivalence class of monomorphism X → A where we

say that the monomorphism f and g are equivalent if they factor through each other.

So we define

Definition 1. A group scheme H together with a monomorphism H → G is called a subgroup
scheme of G.

In the functorial definition, this is to say that there is natural transformation of functors H→ G
such that H(T ) → G(T ) are always subgroups. A normal subgroup scheme H → G is one such
that H(T )→ G(T ) is normal for all T . (I don’t know the algebraic geometry definition.)

We are interested in closed subgroup schemes i.e. one where the underlying scheme is closed
subscheme. In the affine case, this is to say that O(H) = O(G)/I. For example, SLn is a closed
algebraic subgroup of GLn which in turn is closed algebraic subgroup of SLn+1.

4. Quotient

Suppose that H→ G is normal subgroup schemes; both over Spec(k) so we can view as functors
k-Alg→ Groups. We can define the functor

G/H : k-Alg→ Groups

A 7→ G(A)/H(A)

For it to be an affine group scheme (resp. affine algebraic group), we need a k-algebra R (resp.
k-algebra R of finite type) such that G/H(A) = Hom(R,A) for all A. It is not clear how one would
get such an object from the corresponding representation for G and H.
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According to Wikipedia: “For a subgroup scheme H of a group scheme G, the functor that takes
an S-scheme T to G(T )/H(T ) is in general not a sheaf, and even its sheafification is in general
not representable as a scheme. However, if H is finite, flat, and closed in G, then the quotient is
representable, and admits a canonical left G-action by translation. If the restriction of this action
to H is trivial, then H is said to be normal, and the quotient scheme admits a natural group law.
Representability holds in many other cases, such as when H is closed in G and both are affine
(Raynaud, Michel (1967), Passage au quotient par une relation d’quivalence plate).”

Example 1. SLn is normal subgroup scheme of GLn since it is kernel of det : GLn → GL1. The
quotient we know is the group scheme GL1.

Exercise 3. Find an algorithm to find [the representing scheme] quotient of group schemes. In
other words, given affine group schemes G = Spec(A) and closed subgroup H = Spec(B), find the
Hopf algebra C that represents G/H.

5. Base change

If S ′ is a scheme over S and G is a group scheme over S then we can define a functor GS′ given
by

GS′(T ) = G(TS)

for any S ′-scheme T . Here, TS is literally the scheme T but treated as a scheme over S in trivial
way i.e. via composition T → S ′ → S.

It is easy to see that if G represents G then GS′ is represented by G×S S ′ by universal property
of fiber product. Thus, GS′ is a group scheme over S ′.

6. Restriction of scalars

Let k′ be a k-algebra. For a group scheme G over k′, we have a restriction of scalar functor
(Resk′/k is a function on functor and give a functor as output)

Resk′/kG : k-Alg→ Groups

A 7→ G(k′ ⊗k A)

Similar to the situation of quotient, for Resk′/kG to be a group scheme, we need a scheme that
represents it and there is no clear way of getting such a scheme. (See example below to see
illustration of the complications.) This can be guaranteed in case such as k′ is finitely generated
and projective as a k-module, according to Proposition 5.1 in [1], page 60.

Example 2. Let k/Q be an imaginary quadratic field (or any totally complex field i.e. imaginary
quadratic extension k/F of a totally real field F ; we only need an involution). We define the
unitary similitude group functor

Uk(n, n) : Z-Alg 7→ Groups

by

Uk(n, n)(A) := {g ∈M2n(OK ⊗ A) | g∗J2ng = J2n}

and J2n =

(
0 −In
In 0

)
where g∗ is conjugate transpose1. I want to emphasize the fact that this

functor depends on k. Also note that this is not an algebraic group over OK because complex
conjugation is not an algebraic operation.

1Observe that every Z-algebra A, the OK-algebra OK ⊗ A has conjugation induced by the conjugation of k,
namely on basic tensor x⊗ a = x⊗ a.
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To make it into an algebraic group, we need a scheme over Z that represents it and we make
use of restriction of scalar:

Uk(n, n) = {g ∈ ResOK/Z GL2n/OK
| g∗Jg = J}

which exists since OK/Z is finitely generated and projective (in fact, free of rank 2).
To write down the scheme explicitly, recall that OK = Z⊕Zω where ω is root of some quadratic

polynomial F ∈ Z[X] and note that ω ∈ OK so it can be expressed as a+ bω for some fixed integer
a, b ∈ Z. A matrix g ∈ M2n(OK ⊗ A) can be broken as g = 1 ⊗ X + ω ⊗ Y with X, Y having
entries in A. Then g∗ = 1⊗X t + ω ⊗ Y t = 1⊗X t + (a+ bω)⊗ Y t. Now let

R = Z[xij, yij, w]/(F (w), g∗J2ng − J2n)

where g∗J2ng − J2n consists of (2n)2 equations.

From this example, one can see that restriction of scalars has the effect of “adding additional
equations to define parameters in k′ over k”.

7. Intersection

Proposition 1.36 of [2]: Let Hj be a family of algebraic subgroups of G. Then H :=
⋂
Hj is an

algebraic subgroup of G. If G is affine, then H is affine, and its coordinate ring is O(G)/I where
I is the ideal in O(G) generated by the ideals I(Hj) of the Hj.

8. Center and derived subgroup

Let G be algebraic group (viewed as a functor) over k and H an algebraic subgroup then the
functor NG(H) where

NG(H)(R) := {g ∈ G(R) | gH(R)g−1 = H(R)}
is an algebraic subgroup (c.f. [2], Proposition 1.59). Likewise, the functor

CG(H) : R 7→ {g ∈ G(R) | g centralizes H(R′) in G(R′) for all R− algebra R′}
is an algebraic group by Proposition 1.67 of [2]. We define the center of G to be ZG := CG(G).

When k is a field, we define the derived subgroup Gder to be the intersection of all2 normal
subgroups N of G such that G/N is commutative. By Proposition 8.20 of [2], Gder is generated
by commutators map (x, y) 7→ xyx−1y−1 when G is affine or smooth. (Note that if K is a group,
the set of commutators {xyx−1y−1} needs not be a group though it is closed under inverse and
has identity so we have to take the group generated by it to get a subgroup of K. In other words,
[K,K] = {x1y1x−11 y−11 ...xryrx

−1
r y−1r } is a subgroup of K.) It is easy to find out explicitly the Hopf

algebra in affine case. We illustrate that in the following

Example 3. Abstractly, the center of GLn(A) consists of aIn for a ∈ A× and the derived subgroup
of GLn(A) is precisely SLn(A). To construct the derived subgroup of GLn in abstract way, recall
the Hopf algebra for GLn is A = k[xij, y]/(det(xij)y − 1) and co-multiplication and co-inverse are
as given before. Set Ar = A ⊗ A ⊗ · · · ⊗ A and we get the co-commutator map cr : A → A2r

(basically formula to compute commutator from usual matrix multiplication). Let Ir := ker(cr)
and I :=

⋂
Ir. Then GLdern is represented by A/I.
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2This is a finite intersection since k is a field and so the scheme representing G is noetherian.


