
ALGEBRAIC GROUPS I – THREE DEFINITIONS

LAWRENCE VU

The goal of this very first note is to give 3 equivalent definitions of (affine) algebraic groups over
a ring k. All rings are commutative with 1.

(i) As group object in category of scheme;
(ii) As a Hopf k-algebra;

(iii) As a representable functor k-Alg→ Groups.

We assume the reader is in full mastery of algebraic geometry; such as complete command1 of
Hartshorne [2] or Grothendieck’s EGA [1]. My main reference is Milne’s books [3], [4].

1. Group Scheme

Let S be a fixed scheme; for example S = Spec(k). Hereafter, if X and Y are S-schemes then
X × Y means the fiber product X ×S Y in the category of S-schemes.

Definition 1. A group scheme over S is a tuple (G,m, e, i) where G is an S-scheme and m :
G × G → G, e : S → G and i : G → G are morphisms of S-schemes satisfying the familiar group
axioms in the form of commutative diagrams2:

(i) Associativity:

G×G×G Id×m //

m×Id

��

G×G

m

��
G×G m // G

(ii) Property of unit element of G:

S ×G e×Id //

##

G×G

m

��

G× S
Id×e

oo

{{
G

1This is a joke.
2Think of S as the trivial group scheme. We will see the reason later in the third viewpoint.
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(iii) Existence of inverse:

G
i×Id //

��

G×G

m

��

G
Id×i

oo

��
S

e // G Se
oo

An algebraic group over S is a group scheme over S of finite type. An affine algebraic group is an
algebraic group whose underlying scheme is affine i.e. G = Spec(A) for some ring A.

Example 1. An elliptic curve E defined over a field k should be an algebraic group over S =
Spec(k). Unfortunately, it is typically hard and time consuming to write down a morphism between
schemes so we won’t give the explicit mE, eE and iE.

Example 2. Standard algebra and algebraic geometry taught us that groups whose operations
are “polynomials” should be algebraic group since they are group in category of algebraic varieties.
With that the general linear group GLn should be an algebraic group; but as with elliptic curve, it
is hard to write down the scheme morphisms explicitly. The underlying scheme is easy though

G = Spec(k[xij, y]/(det(xij)y − 1)).

It is not hard to guess the definition of morphism of group schemes; so we get a natural category
of group schemes over S, denoted by GroupSchemeS, as well as its subcategory of algebraic
groups.

2. Affine algebraic group as Hopf algebra

Recall from [2] the following facts:

(i) Giving a morphism of schemes X → Y where Y is affine is equivalent to giving a homomor-
phism of rings Γ(Y,OY )→ Γ(X,OX). As a consequence, the categories of affine schemes
and commutative rings with 1 are contra-equivalent; more precisely, the Spec-functor gives
an equivalent of categories.

(ii) If X = Spec(A), Y = Spec(B) are affine schemes over the affine scheme S = Spec(k) then
X ×S Y ∼= Spec(A⊗k B).

With this two facts, we see that giving an affine group scheme G over Spec(k) is equivalent
to giving a k-algebra A = Γ(G) = O(G) together with ring homomorphisms µ : A → A ⊗k A,
ε : A→ k and ι : A→ A, that is the co-multiplication, co-identity and co-inverse corresponding to
the scheme morphisms appearing in the definition of group schemes), satisfying the 3 commutative
diagrams of Definition 1 with A replaced G, k replaced S and all arrow reversed. We call such
an algebra a Hopf algebra. An affine algebraic group now become a Hopf algebra that is finitely
generated over k i.e. is a quotient k[x1, ..., xn]/I.

Example 3. With this view point, we can complete the structure of GLn. The Hopf algebra A
should be k[xij, y]/(det(xij)y − 1) that we gave above. The co-identity3 map ε : A → k should
simply send xij 7→ δij ∈ k, y 7→ 1, the co-inverse map is simply xij 7→ yMij, y 7→ det(xij)
where Mij is the appropriate minor and finally, the co-multiplication µ : A → A ⊗k A =
k[Xij, Y, Zij,W ]/(det(Xij)Y − 1, det(Zij)W − 1) sends xij 7→

∑
Xik ⊗ Zkj and y 7→ YW . In-

tuitively, these maps tell us how to do the group operations in GLn.

3Recall that to give a map from k[x1, ..., xn]/I → B (where B is any k-algebra) is equivalent to giving a map
k[x1, ..., xn]→ B such that I → 0.
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Note that GLn depends on k so normally, we should write GLn/k.

Example 4. Write down the definition of morphism of Hopf algebra that corresponds to morphism
of affine algebraic groups. Verify the first definition.

3. Algebraic group as representable functors

3.1. Representable functor. Let C be a locally small category (i.e. such that HomC(A,B) is a
set for any objects A,B ∈ C) so that for any fixed object A, we have a natural functor

Hom(A,−) : C → Sets

For any object B ∈ C, Hom(A,B) should be the obvious set. As for each morphism f : B → B′ in
C, the corresponding morphism Hom(A,−)(f) : Hom(A,B)→ Hom(A,B′) is given by g 7→ f ◦ g.
See appendix for proof that this is a functor.

Definition 2. A functor F : C → Sets is representable if it is naturally isomorphic to Hom(A,−)
for some object A ∈ C.

In other words, there exists a representation (A,Φ) for F where

Φ : Hom(A,−)→ F

is a natural isomorphism of functors; in other words, for any B ∈ C, Φ gives us a bijection
Φ(B) : Hom(A,B)→ F(B) between two sets so that the diagram

Hom(A,B)
Φ(B)

//

Hom(A,−)(f)

��

F(B)

F(f)

��
Hom(A,B′)

Φ(B′)
// F(B′)

commutes for any arrow f : B → B′ in C.
More generally, suppose that we have a category D equipped with a “forgetful” functor G : D →

Sets then a functor F : C → D is G-representable if there exists a representation (A,Φ) such that
G ◦ F is isomorphic to Hom(A,−) as functors C → Sets.

Remark. Functors composed in natural way. If F : C → C ′ and G : C ′ → C ′′ are co-variant
functors then we have a natural composed functor G ◦ F : C → C ′′ where G ◦ F(A) = G(F(A)) and
G ◦ F(f) = G(F(f)).

3.2. Group scheme as representable functors.

Definition 3. A group scheme over a base scheme S is a G-representable functor

G : Schemeop
S → Groups

where F : Groups→ Sets is the natural forgetful functor.

Explicitly, this simply says that a group scheme G is a functor such that there exists a scheme
X (called the representing scheme) so that for every S-scheme T , the group G(T ) is in bijection
with S-scheme morphisms T → X.
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Exercise 1. Recall from [2] that any scheme can be covered by affine schemes and in fact a
morphism between schemes are just a collection of “compatible” morphisms between affine schemes.
Thus, if C is a good category (one which has product) then a functor

G : AffineSchemeop
S → C

has natural extension to a functor

G+ : Schemeop
S → C

by functoriality; namely, for every scheme T ∈ Schemeop
S , we can express

T =
⋃

Uα

where Uα are affine schemes. Let Uαβ = Uα ∩ Uβ and ια : Uα → T and ιαβ : Uαβ → Uα natural
inclusion morphisms of S-schemes. Now, should an extension G+ exists, do it to the commutative
diagram

Uαβ //

��

Uα

��
Uβ // T

we get diagram

G(Uαβ) G(Uα)oo

G(Uβ)

OO

G+(T )oo

OO

by its functoriality. Thus, we should define G+(T ) =
∏

G(Uα).

(i) Verify that G+ is a well-defined functor (independent of the covering).
(ii) If G is representable, is G+ also representable?

(iii) Is it true that any functor G : Schemeop
S → Groups should be completely determined by

its effect on the sub-category AffineSchemeop
S ?

In particular, if S = Spec(k), then a group scheme functor is equivalent to a functor G : k-Alg→
Groups that is represented by an k-algebra i.e. there exists a k-algebra R such that G(A) is in
one-to-one correspondence with the set of k-algebra homomorphisms R→ A.

Example 5. GLn revisited. We define the functor

G : k-Alg→ Groups

by G(A) = GLn(A). This functor is represented by the k-algebra

R = k[xij, y]/(det(xij)y − 1)

for it is easy to check that a homomorphism φ : R → A is completely determined by the image
φ(xij) ∈ A and conversely, for any n2 elements aij of A such that the matrix (aij) is invertible,
we get a corresponding φ : xij 7→ aij; y 7→ 1

det(aij)
. From this example, one could realize that the

functor G is just a device that tells us what the “T -points” (i.e. points with coordinates in T ; in
algebraic geometry, one is probably familiar with the notion of k and k points of a variety but this
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doesn’t make any sense if T is another scheme) of the underlying schemes and the “operations”
on those points.

Example 6. As a special case, the multiplicative group functor Gm/k(A) = A× is a group scheme.
It is the special case Gm/k = GL1.

Example 7. The additive group functor Ga/k(A) = (A,+) is also a group scheme. What is it
represented by? (Answer: The polynomial ring R = k[x].)

A morphism between two group scheme functors G and H is just a natural transformation of
functors. The equivalence of this definition and the Definition 1 is a consequence of Yoneda lemma.

Theorem 1 (Yoneda lemma). Let C be a locally small category and F : C → Sets be a functor.
Then the set of natural transformations from HA := HomC(A,−) to F is in bijection with F(A).

As a consequence, define a new category C∗ whose objects are functors of the form HA for some
A ∈ C and whose morphisms are natural transformations of functors. Then the category C∗ is
equivalent to Cop.

Proof. Obvious.
The equivalence of category could be made explicitly in obvious way: An object A ∈ C should

correspond to the functor HA ∈ C∗ and for each morphism f : B → A in C, we have a corre-
sponding natural transformation ηf : HomC(A,−) → HomC(B,−) where ηf (g) = f ◦ g for any
g ∈ HomC(A,X). �

Exercise 2 (Fun exercise). Elliptic curve E over a field k is a natural a functor where for a field
extension L/k, E(L) is just the points projective points P with coordinates in A satisfying the
defining equation of E (and group operations as in Silverman). If T is an arbitrary scheme that is
not affine, how should one interpret E(T ) geometrically? In particular, what is E(E)? (This should
be obvious if T is affine i.e. T = Spec(A) for some k-algebra A; then one can use functoriality to
patch these things. As for E(E), it is in bijection with Hom(E,E) by representability so basically,
it is the group of endomorphisms of E.)

It should be clear from this functorial definition that the functor F = HomSchemeS(−, S) rep-
resented by S gives us the trivial group scheme i.e. F(T ) is trivial group for all T since there is
always exactly one S-scheme homomorphism T → S.

Appendix: Proof of Functoriality of Hom. Opposite category : Recall that for any category
C, we have the Cop obtained by reversing all morphisms i.e. the objects of Cop are the same as that
of C while HomCop(A,B) = HomC(B,A).

Product Category : Given two categories C and D, we can define a category C ×D whose objects
are pair (X, Y ) of objects X ∈ C, Y ∈ D and whose morphisms (X1, Y1) → (X2, Y2) are pairs of
morphisms (f, g) where f : X1 → X2 and g : Y1 → Y2. (Identity morphism should be obvious; as
are compositions of morphisms.)

In particular, we have product Cop × C and if C is locally small, we have a canonical functor

F : Cop × C → Sets

given on objects by F(X, Y ) = HomC(X, Y ) and on morphisms, say φ = (f, g) : (X1, Y1) →
(X2, Y2), by F(φ) : Hom(X1, Y1)→ Hom(X2, Y2);h 7→ g ◦h ◦ f . Note that by definition of opposite
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category f : X2 → X1 so we are just following the arrows

X1
h // Y1

g

��
X2

f

OO

F(φ)(h)
// Y2

g′

��
X3

f ′

OO

F(φ′)(F(φ)(h))
// Y3

Is there intrinsic meaning to representable functors of Cop × C?
Fix an object T ∈ C then there is an obvious “embedding” functor

ET : C → Cop × C
given by ET (X) = (T,X) and ET (f) = (IdT , f) for a morphism f : X → Y . Composing with F
above, we get a functor F ◦ ET : C → Sets given by X 7→ Hom(T,X) that we constructed at the
beginning. (This shows that Hom(T,−) is indeed a functor.)

4. What is each definition good for?

In the theory of automorphic forms, the third definition (i.e. as representable functor) is most
widely used and probably easiest to employ. That is because we get “actual groups” to analyze. It
is also easy to write down the definition for the group whereas the Hopf algebra homomorphisms
and the scheme morphisms are normally difficult or time consuming to describe explicitly. However,
the representability condition is typically non-trivial to prove. To do that, one usually needs to
construct a scheme (or a Hopf algebra) that represents the functor4. We shall see later that many
interesting functors that are easy to write down but hard to verify to be group schemes.

Remark. We remark that there is a canonical representing scheme, at least in the affine case, in
[3], example 3.7.

Suppose that a functor G : k-Alg → Sets is represented by an affine scheme G = Spec(A)
i.e. G = Homk(A,−). Let A1 : k-Alg → Sets;R 7→ R be the forgetful functor. Then A is
isomorphic to the ring of natural transformations from G to A1. (TODO: Add analogy with
algebraic geometry. The notation A1 should be suggestive of the affine line.)
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