
LAMBDA CALCULUS FROM LOGICAL PERSPECTIVE

LAWRENCE VU

Abstract. This article presents a glimpse about the process of
deriving λ-calculus from scratch which I have undertook. In most
sections, the author assumes the reader basic knowledge of set the-
ory, recursive definition, (first-order) logic, functional and object-
oriented programming.

1. Introduction

I believe that most programmers with limited theoretical exposure1

remember “the ability to pass functions as arguments to other func-
tions” (or its paraphase, “functions are treated as first class objects”)
as the only feature of functional programming. This is probably be-
cause most functional programming languages hide many things from
programmers and shows users the superficial beauty beneath the para-
digm. There are many ideas diverging from conventional programming
such as

• Everything is a function.
• Function has exactly one argument and has any number of ar-

guments.

I used to program in functional programming languages. Recently, I
realize that the anonymous function construct (i.e. lambda in Scheme
or fun in Ocaml) resembles the quantified formulas in first-order logic
and thus, suspect that this construct is sufficient for every possible
computation. Indeed, this inspiration allows me to develop the well-
known (untyped) λ-calculus2 from scratch.

As said, λ-calculus can be seen as a computational analogue of first-
order logic. Therefore, reader with background in mathematical logic
will find the correspondence table 1 helpful. This article partly recounts
the mentioned experience. I choose to leave the corresponding semantic
for a different occasion.

Date: 3rd March 2013.
1Such a group of programmer includes myself.
2This calculus is originally developed by Alonzo Church.

1

2 LAWRENCE VU

First-order logic λ-calculus
Syntax Logical terms and formulas λ-expressions

Manipulation system Proof system Rewriting system
Table 1. Logic to λ-calculus correspondence

The next section will cover the correspondence as described in the
table 1 and the one after that illustrates how imperative programming
is done in λ-calculus. Most exercises included are for inspired reader
and some of them should be treated not as fact because they are derived
using the author’s philosophy and heuristic arguments.

2. First-order Logic to λ-expressions

2.1. Syntax. The basic building blocks in λ-calculus are λ-expressions.
Let V = {v0, v1, v2, . . . } be a fixed collection of variable symbols and
assume that V does not contains parentheses, comma as well as the
symbol λ (view them as reserved keywords).

Definition 1. The collection Λ is the minimal collection of strings
such that

(i) V ⊂ Λ;
(ii) If φ, ψ ∈ Λ then φ(ψ) ∈ Λ;
(iii) If φ ∈ Λ then λ(v, φ) ∈ Λ for any v ∈ V .

Elements of Λ are called λ-expressions (or just expressions if there is
no confusion).

Definition 1 seems cryptic but its meaning is very simple. Intuitively,
it allows one to recursively collect more strings to Λ starting from V .
Clause (i) gives the basic expressions: every variable is an λ-expression.
Then , vi(vj) are also λ-expressions by applying clause (ii) with all
combinations of φ = vi and ψ = vj. With clause (iii), we include to
Λ all strings λ(vi, vj) by letting v = vi and φ = vj. Applying this
deduction again, we infer that all combinations

vi(vj)(vk), vi(vj)(vk(vl)), vi(vj)(λ(vk, vl)), · · · ∈ Λ

The process continues ad infinitum3.
The minimality condition in the definition means that only strings

obtained via the above process are in Λ; otherwise, Λ is not uniquely

3This process can be made precise by constructing the approximating sequence
Λn with

Λ0 = V

Λn+1 = Λn ∪ {φ(ψ) : φ, ψ ∈ Λn} ∪ {λ(v, φ) : v ∈ V ∧ φ ∈ Λn}

LAMBDA CALCULUS FROM LOGICAL PERSPECTIVE 3

defined: the collection of all possible string also works. In particular,
(due to minimality), if φ is a λ-expression then either

(i) φ is a variable; or
(ii) φ = α(β) for some λ-expressions α and β; or
(iii) φ = λ(v, α) for some variable v ∈ V and λ-expression α.

Expressions in the third form are called a λ-abstraction. Before going
on, I would like to draw comparison with constructions of formulas in
first-order logic:

• The set of variable symbols V corresponds to the dummy log-
ical variables.
• The second case in definition 1 corresponds to construction of

new formulas using logical connective (and, or, not, etc). In
particular, if φ and ψ are a logical formulas then φ∧ψ, φ∨ψ,
... are. That said, I could have choose an alternative notation,
say φ · ψ, instead of the familiar notation φ(ψ) for function
application.
• The last part of the definition corresponds to the quantified

formula. Think of, say, if φ is a logical formula then ∃v ·φ and
∀v ·φ are also logical formulas. The alternative notation λv : φ
would probably illustrate this analogy better.

A major difference between the two scenarios is that logical formulas
are well-typed.

For simplicity, from now on, I will consistently use lower case letters
f, x, y, z, . . . for variables instead of v0, v1, . . . , (different letters are for
different variables i.e. different element of V) and Greek letters α, β, . . .
denotes λ-expressions.

2.2. The intuition behind λ-expressions. By themselves, λ-expressions
are meaningless strings of symbols but the definition certainly contain
some inherent meaning. Intuitively, the expression λ(x, α) represents
“a function that map x to α”4 and φ(ψ) should be read “apply the
function φ on ψ”.

for all n ≥ 0. The idea is that Λn collects the expressions constructed within n
steps. Then we simply collect all Λn to get

Λ =

∞⋃
n=0

Λn.

4I do not know why Church used the Greek letter λ but if I were him, I would
use either τ for “transform” or µ for “map”.

4 LAWRENCE VU

A quick readers might ask: if λ(x, α) is supposed to be a function,
then what is its domain and co-domain? In untyped λ-calculus, the in-
tended domain/co-domain is Λ, the collections of λ-expressions. Math-
ematically speaking:

λ(x, α) : Λ→ Λ

φ 7→ α[x/φ]

So the story goes naturally: α gives the body (i.e. implementation) of
the function λ(x, α). So to compute λ(x, α)(φ) on its input, we simply
substitute φ to the occurrences of x in α and simplify the resulting
expression5. On the other hand, λ can basically be viewed as a function
constructor : it takes in a variable symbol x, the λ-expression α and
return a function object which (on input φ) returns α[x/φ], the λ-
expressions obtained by replacing all free occurrences6 of x by φ.

To summarize the whole discussion, functions constructed via λ-
abstractions syntactically transforms λ-expressions to further λ-expressions.
Again, the central idea of λ-calculus about algorithmic sufficiency of
λ-calculus (as in the introduction) is now tantamount to: the ability
to define abstraction and application is computationally sufficient.

2.3. Rewriting system. Now, I will present “a rewriting system”
for λ-calculus (i.e. the previously missing pieces about substitution
and simplification). The role of this rewriting system, namely giv-
ing computational capability to λ-calculus, is in par with the reason-
ing/deduction role of a proof system to logic. First, definition 2 defines
formally the notation φ[v/ψ] of variable substitution:

Definition 2. Suppose that φ and ψ are λ-expressions. The substitu-
tion of x by ψ in φ, denoted by φ[x/ψ], is defined to be:

5Substitution and simplification mentioned here will be defined shortly.
6The variable symbol x as in λ(x, α) should be viewed as “dummy” placeholder.

For instance, two expressions λ(y, y) and λ(x, x) mean basically the same function,
namely the identity (echo) function, which returns whatever is input. Such dummy
variables are called bound variables of the expression. The analogous scenario in
logic is about bound variable of a formula. For example, ∀x : f(x) = x means
the same thing as ∀y : f(y) = y. We formally define the set of free variables of a
λ-expression φ by the following:

FV (φ) :=


{φ} if φ ∈ V
FV (α) ∪ FV (β) if φ = α(β)

FV (α)\{v} if φ = λ(v, α).

LAMBDA CALCULUS FROM LOGICAL PERSPECTIVE 5

(i) If φ ∈ V then

φ[v/ψ] :=

{
ψ if φ = x;

φ otherwise.

(ii) If φ = α(β) then

φ[x/ψ] := α[x/ψ](β[x/ψ])

(iii) If φ = λ(v, α) then

φ[x/ψ] :=

{
φ if x = v;

λ(v, α[x/ψ]) otherwise.

Definition 3. Suppose that φ and ψ are λ-expressions. We say that φ
simplifies/reduces/is equivalent to ψ or ψ is derivable from φ, denoted
by φ ` ψ, if one of the following holds:

(i) φ = ψ
(ii) φ = α(β) and ψ = γ(β) and α ` γ
(iii) φ = α(β) and ψ = α(γ) and β ` γ
(iv) φ = λ(x, α) and ψ = λ(x, β) and α ` β
(v) φ = λ(x, α) and λ(y, α[x/y]) ` ψ and y is substitutable for x

in α
(vi) φ = λ(x, α)(β) and α[x/β] ` ψ and β is substitutable for x in

α

Clause (i) is trivial: one can leave an expression alone (the “identity
rule”). Clause (ii)–(iv) says that one can replace sub-expressions by di-
rectly derivable ones7, and I will name them “structural rules”. Clause
(v) says that variables are just placeholders and can be replaced by any
appropriate ones. I will adapt the nicer name from first-order logic,
“alphabetic invariant rule”. The last case (which I shall call “cancella-
tion rule” or “λ-evaluation rule”) describes our intention: the inverse
nature of abstraction and application.

What does it mean by substitutable? Consider φ = λ(y, λ(x, y))
which is a function that returns a constant-y function on input y. Now,
if we perform the substitution

λ(x, y)[y/x] = λ(x, x)

which is the identity function. Therefore, we MUST NOT have

φ(x) ` λ(x, y)[y/x]

7Bear similar clauses (ii) and (iii) in mind, they introduces the concept of eager
versus lazy evaluation in functional programming

6 LAWRENCE VU

because it violates our original intention: φ(x) is supposed to return
a constant-x function. In this case, we say that x is not substitutable
for y in φ. In general, β is substitutable for x in α if α[x/β] does not
make any free variables in β become bound.

Let us resume the earlier example:

λ(y, λ(x, y))(x) ` λ(y, λ(z, y))(x)

` λ(z, y)[y/x] = λ(z, x)

The first line is due to structural rule: namely, we replace λ(x, y) by
λ(z, y) using λ(x, y) ` λ(z, y) (application of alphabetic invariant rule).
The second is by cancellation rule.

Remark: A typical strategy to apply the last rule on the pattern
λ(x, α)(β) is to first select a variable y which does not appear at all in
both α and β. We use alphabetic invariant rule to get

λ(x, α) ` λ(y, α[x/y])

and then apply cancellation to obtain

λ(y, α[x/y])(β) ` α[x/y][y/β]

which has a similar effect of directly substituting β for x into α i.e
α[x/β].
Exercise 1: Show that the choice of y make it substitutable for x in
α and then β is substitutable for it in α[x/y].

3. Programming in λ-Calculus

Defining the notion of λ-expressions is already creative. And figuring
out the computational capability of such thing requires yet a greater
amount of creativity.

Fundamentally, λ-calculus is invented to describe algorithms for-
mally8. There are two problems:

(i) How to use λ-expressions to define functions i.e. to write pro-
grams?

(ii) Given a λ-expression, what does it really compute?

The second problem is a very hard problem concerning program se-
mantic. This section will only deal with the first problem. In particular,
I will recover the familiar notion of imperative programming such as

• Primitive data types : boolean and natural numbers

8In other words, the problem it tried to solve is to classify computable functions
(such as F (n) that returns the n-th Fibonacci number) from non-computable ones
(such as the function R(n) that returns a random number)

LAMBDA CALCULUS FROM LOGICAL PERSPECTIVE 7

• Compound data types : pair, list (array), structures (i.e. object
oriented programming)
• Control flow constructs : if-then-else, for-loop, while-loop

and general recursion

Before going on, let me make some simplification on the notation.
First of all, I shall use

x1, x2, ..., xn 7→ φ

to denote the expression

λ(v1, λ(v2, ..., λ(vn, φ)...).

Secondly, the expression
φ1φ2...φn

or the more familiar
φ1(φ2, ..., φn)

will also be used in place of the consecutive function application

φ1(φ2)(φ3)...(φn).

Where do we go from here? We want to use λ-expressions to write
functions like Fib(n) which returns the n-th Fibonacci number. Re-
call that each λ-abstraction represents a function mapping Λ → Λ.
So the basic idea is to use λ-abstractions to write functions (i.e. al-
gorithms) and select the appropriate expressions for data structures.
In particular, we want to get the expressions >, ⊥ and a collection of
expressions {φn} to represents boolean constant true, false and the
natural numbers. Then, implementation of a function F , say of form
N → N like Fibonacci, is tantamount to constructing an expression
φF of the form9 x 7→ � such that the application φF (φn) is equivalent
to φF (n) i.e. φF (φn) ` φF (n), the expression we used to represent the
natural number F (n).

The point is: selection of data representation (>, ⊥, etc) should
allows us to easily implements the operators on them. For instance,
given the choice of each φn, we might want to implement addition
function i.e. + : N,N → N with n,m 7→ n + m. Put it literally, we
want an expression φ+ such that

φ+(φn, φm) ` φn+m
for all n,m ∈ N. If we choose φn = vn ∈ V then there is NO way to
define φ+.
Exercise 2: Prove that there is really no way. Seriously!

9I shall use a � at places where an expression is required and should be filled in
later.

8 LAWRENCE VU

If you need a hint : look for the invariant between equivalent expressions.
If φ ` ψ then what is not changed in this transformation? It turns out
that their set of their free variables must agree: FV (φ) = FV (ψ).

If we are able to define such φ+ such that φ+(vn, vm) ` vn+m for all
n,m ∈ N then we must have FV (φ+(vn, vm)) = FV (vn+m) for all n,m.
By definition, FV (φ+(vn, vm)) = FV (φ+)∪{vn, vm} while FV (vn+m) =
{vn+m}. Since φ+ is always a finite string, FV (φ+) is finite and thus
we can pick up a number k ∈ N to be the maximum index such that
vk ∈ FV (φ+). Apply the invariant property for n = m = k + 1, we
expect FV (φ+) ∪ {vk+1} = {v2k+2}. This is impossible since 2k + 2 >
k + 1 ≥ 1!

Exercise 3: Prove that if one can define some collection of natural
number representation i.e. {φn : n ∈ N} and is able to implement all
the operators φ+, φ×, ... then one can find a collection of representation
in which every expression is free of free variables.

Hint : Instantiate them all.

In general, given the choice of {φn : n ∈ N}, the question whether
we can find a definition of φ+ is extremely hard to decide!

3.1. Boolean logic. It turns out that the choice of >,⊥, φn all de-
pends on what operators we want to have on them are. For boolean
logic, we will want to define φ∧, φ∨, φ¬ for logical and, or, not opera-
tions as well as φite for the conditional if-then-else construct. For
natural numbers, we want to be able to define at least φ+ and φ× for
addition and multiplication and then possibly further define φexp and
φiszero for exponentiation and zero-checking.

Without further ado, let me present a solution:

> := x, y 7→ x = λ(x, λ(y, x))

⊥ := x, y 7→ y = λ(x, λ(y, y))

Notice the meaning of the two expressions: the first one is a function
that return a constant-x function while the second one is a function that
regardless of the input, return the identity function (i.e. it is constant-
identity-function function). As the notation conveys, they can also be
viewed as function taking two arguments and return either the first or
the second input (a projection or a selector). The following expression

φite := x, y, z 7→ x(y, z)

implements if-then-else. Why is that? Think of the application
φite(α, β, γ) where α, β, γ are arbitrary expressions. If α ` > then

φite(α, β, γ) ` φite(>, β, γ) ` >(β, γ) ` β
Similarly, if α ` ⊥ then φite(α, β, γ) ` γ. In fact, the expressions >
and ⊥ are chosen as selectors to easily get φite.

LAMBDA CALCULUS FROM LOGICAL PERSPECTIVE 9

Now, what about logical connectives? The expressions

φ∧ := x, y 7→ x(y,⊥)

φ∨ := x, y 7→ x(>, y)

φ¬ := x 7→ (y, z 7→ x(z, y))

implement logical and, or and negation respectively.
How did I get these? Think of the inherent meaning of the function.

For instance, we expect φ¬(>) ` ⊥ and φ¬(⊥) ` >. Let’s interpret
this literally:

• Input: the 2-argument-return-the-first function
Output: the 2-argument-return-the-second function
• Input: the 2-argument-return-the-second function

Output: the 2-argument-return-the-first function

Think more abstractly, we can see that “logical negation” in this case
simply swaps the role of the two arguments of the supplied function
input to φ¬ and the definition y, z 7→ x(z, y) does just that. (The
expression x 7→ (y, z 7→ x(y, z)) is equivalent to identity function on >
and ⊥!)

3.2. Natural numbers. Now, let us tackle natural numbers: choose

φn := f, x 7→ f(f(f...(f︸ ︷︷ ︸
n times

(x))...)

Literally, φn can be viewed as a two-argument function with one of
them (i.e. the first input) being a one-argument function and return
the value obtained by applying the one-argument function n times on
the second input. This is what I shall call functional/computational
nature of natural numbers (as opposed to the ordinal/cardinal nature).

Then we get

φ+ := x, y 7→ f, z 7→ x(f, y(f, z))

φ× := x, y 7→ f, z 7→ x(y(f, z))

φexp := x, y 7→ y(φ×(x), φ1)

φiszero := x 7→ x((y 7→ ⊥),>)

φiseven := x 7→ x(φ¬,>)

How to get these implementations? Again, think of it functionally.
We expect φ+(φn, φm) = φn+m which literally expand to φ+ taking a
function that apply f for n times and a function that applies f for n
times and returns a that applies f for m+n times. Evidently, to apply

10 LAWRENCE VU

f for m+n times, we can first apply it for n times, take the result and
then apply f to it for m times. From the definition, we should expect

φk(f, x) = f(f(...(f︸ ︷︷ ︸
k times

(x)...)

so that

φn(f, φm(f, x)) = f(f(...(f︸ ︷︷ ︸
n times

(φm(f, x))...)

= f(f(...(f︸ ︷︷ ︸
n times

(f(f(f...(f︸ ︷︷ ︸
m times

(x))...))...)

= f(f(...(f︸ ︷︷ ︸
m+n times

(x))...))...)

So the expression x(f, y(f, z)) generalizes this expectation by replacing
x for φn and y for φm gives the implementation. The rests are obtained
with similar reasoning.
Exercise 4: Find a way to represent integer.
Exercise 5: Implement more complicated operations on natural num-
bers such as subtraction and division. If this is not easy or even possi-
ble, how should the definition be fixed?

Hint: Implement predecessor φn 7→ φn−1 first. Recall that n is supposed
to perform f(f(...f(x)...) for n times. Think of the imperative program:

y = x

for i = 0 to n-1 do

y = f(x)

return y

To create n − 1, we need to return something that is equivalent to
f(f(...f(x)...) for n − 1 times. To do so, we will need to produce a
function g from f so that by applying g(x) for n times, you can extract
f(f(...f(x)...) (n−1 applications)! The solution is to think of g as having
another input: a flag to tell whether it has apply f or not as in

flag = false; y = x

for i = 0 to n-1 do

if (flag) then

y = f(x)

else

flag = true

return y

which basically skips the first application of f . An alternative is to fix the
definition of φn: represent φn using a pair 〈f, x 7→ f(f(...f(x))), φn−1〉.
The trade-off is clear: the definition of φ+, φ×, ... need to be fixed
accordingly and this is hard.

LAMBDA CALCULUS FROM LOGICAL PERSPECTIVE 11

Exercise 6: Define φFib which computes Fibonacci numbers i.e.

φFib(φn) ` φFib(n)
for all n ∈ N.

3.3. Behind the scene. This section is for the curious: how did I
get the magical choices of φn in the first place? Again, suppose that
defining φ+ is our only goal. Clearly, we expect φ+ to be of the form
x, y 7→ �. What are the non-atomic (i.e. not simply x or y) possible
expressions formed using two variables x and y? There are infinitely
many such expressions, with the simplest10 is perhaps x(y). My goal
now is to find some appropriate choices such that the implementation

φ+ := x, y 7→ x(y)

works. In that case, we have

φn(φm) ` φm+n.

This says that the sum is obtained by applying the number n on the
function m. How is it possible for a piece of data to be applied on
another piece of data? It means that that piece of data is a function!
In other words, φn should be expected to be a λ-abstraction and that
each natural number n, besides their familiar counting role, is identified
with the +n function i.e. the function g(x) := x + n. In other words,
for the aforementioned definition of φ+ to work, we need to choose φn
to be the +n function!

In particular, φ0 must be a +0 function. But for natural number,
the +0 function is just identity function: n+ 0 = n. Therefore, we can
simply choose

φ0 := x 7→ x.

I do not know how to choose φ1 but I expect it to be of the form x 7→ �.
Clearly, we cannot fit x to the � as it will make φ1 = φ0. Again, the
simplest one is x(x) so pick

φ1 := x 7→ x(x)

and see how things go. Now, from the equation 2 = 1 + 1 = +1(1)
i.e. 2 can be obtained by applying the +1 function on the number 1, I
suspect that I can just pick

φ2 := φ1(φ1)

` x 7→ x(x)(φ1)

` φ1(φ1) (cancellation rule)

10Recall Occam’s razor.

12 LAWRENCE VU

One can easily see that no other expression is derivable from φ2! This is
BAD: the expression is not a λ-abstraction while we need to maintain
φ2 to be identified with the +2 function. Despite being bad, we can
still go on with the logic to obtain φ3 = +1(2) = φ1(φ2) ` φ2(φ2) and
in general φn+1 = φn(φn). The problem is that the intended definition
φ+ does not work anymore.

A fix requires a change of mind: if I want φ2 to be a λ-abstraction,
why don’t I think more functionally, say,

+2 = (+1) ◦ (+1)

i.e. the +2 function can be obtained by applying the +1 function twice?
With this fix, I can derive

φ2 = x 7→ φ1(φ1(x))

` x 7→ φ1(x(x))

` x 7→ x(x)(x(x))

or more generally

φn+1 = x 7→ φ1(φn(x)).

And it should work.
Exercise 7: Check that it do work.

Note: I did not check this formally but there is a good reason for it.
Let temporarily denote by ϕ+ and ϕn to be our choices of φ+ and φn

in this section and retain φ+ and φn for the earlier definition. One can
verify that ϕn := φn(ϕ1) and ϕ+(x, y) := φ+(x, y)(ϕ1).

That is about addition. How about multiplication? This choice does
not allow me to implement φ× easily. At least, no implementation
comes to me immediately. This means, another change of mind is re-
quired. This time, I have the basis and experience to figure out the
solution: think functionally ! First of all, in order to make implementa-
tion of φ+, φ×, ... easy, we need to understand their nature: they are
all iterated applications of some operations. Given that I have figured
out

+n = +1 ◦+1 ◦ · · · ◦+1︸ ︷︷ ︸
n times

so similarly, we should also notice

×n(m) = +m ◦+m ◦ · · · ◦+m︸ ︷︷ ︸
n times

.

The requirement to plug in different operators suggests to me that I
should use some form of higher λ-abstraction such as

x, y 7→ �

LAMBDA CALCULUS FROM LOGICAL PERSPECTIVE 13

instead of the simple x 7→ � so that I easily manipulate the expressions
to get applications of an operation n times. This is how I figure out the
functional nature of natural numbers and get the original definition!

3.4. Conpound data structures: pairs, tuples and list. Suppose
that α, β are two expressions. Again, we want to represent the ordered
pair 〈α, β〉 using the expression φ〈α,β〉 in the way that we can later
define φfirst and φsecond which takes in a pair and returns the first and
second component respectively:

φfirst(φ〈α,β〉) ` α
φsecond(φ〈α,β〉) ` β

Here, the object-oriented programming experience comes to help. Think
of φ〈α,β〉 as an object for which we can supply the methods to access its
first and second component. To mimic that, we need to make φ〈α,β〉 of
the form

m 7→ �

so that latter we can supply some appropriate expression, say µ1 and
µ2, to it and obtain the desired result i.e.

φfirst := x 7→ x(µ1)

φsecond := x 7→ x(µ2)

In other words, we expect

φfirst(φ〈α,β〉) ` φ〈α,β〉(µ1) ` α
φsecond(φ〈α,β〉) ` φ〈α,β〉(µ2) ` β

What do φ〈α,β〉(µ1) and φ〈α,β〉(µ2) resemble? The applications of boolean
values >(α, β) and ⊥(α, β), of course. In other words, let

µ1 := >
µ2 := ⊥

φ〈α,β〉 := m 7→ m(α, β)

and we get what we want. Generalizing this phenomenon allows us to
represent tuples of k expressions (in effect, any class as in OOP) using:

φ〈α1,α2,...,αk〉 := m 7→ m(α1, α2, ..., αk)

The philosophy is: representations is developed to work together with
methods to obtain information about them.
Exercise 8: Scheme/LISP provides cons to construct pairs. Imple-
ment it.
Exercise 9: Find a way to represent a list. The list data structure
should allow us to easily check whether it is empty, get the head of

14 LAWRENCE VU

the list and the tail of the list (i.e. eq nil, car and cdr in Scheme,
respectively).

3.5. Recursion and while-loop. In imperative programming, while
loop is of the form while b do c where b is a boolean-valued expres-
sion and c is some statement. Unfortunately, this form does not have
a direct counterpart in λ-calculus because λ-calculus does not have a
notion of side effect of a statement. To do so, one need to understand
the “functional role” of such construct i.e. what the input and the
output should be.

Similar to if-then-else construct, while loop can be viewed as a
function which transform the initial state (right before the loop be-
gins) to final state (right after the loop exits) where state refers to the
snapshot of current values of all the program variables. For example:
the loop

while (n != 0) do n = n + 1;

can be identified with the recursive function

g(n) :=

{
n if n = 0

g(n+ 1) otherwise.

More generally, the loop

while c(s) do s := u(s)

can be identified with the function

l(s) :=

{
s if c(s) does NOT hold

l(u(s)) otherwise.

where u has the role of a state updating function and c serves as the
contiuation condition. For any initial state s0, l(s0) should be the final
state.

Our goal of this section is to define an expression φγ such that
φγ(c, u, s0) computes exactly l(s0). (I purposely choose φγ because the
Greek letter γ looks like the English letter “Y” which is a homophone
of “while”.) It is tempted to literally translate the above definition of
l(s) to get φγ as

φγ := c, u, s 7→ φite(c(s), φγ(c, u)︸ ︷︷ ︸
l(∗)

(u(s)), s)

but this does not work! The problem is that: we cannot refer to φγ. A
λ-expression cannot be a sub-expression of itself. Stuck?

Let me bring back the experience of the previous section where we
used expressions to represent compound object. If we apply the same

LAMBDA CALCULUS FROM LOGICAL PERSPECTIVE 15

paradigm (i.e. use object to encapsulate computation), we would like
to have γ of the form c, u 7→ � so that γ(c, u) is an object (like a
pair/tuple, probably we can call it a while loop executor). As an object,
γ(c, u) has a method (i.e. a constant expression, probably depending
of c and u), say µ, so that if we invoke µ on the right parameters, we
get the function l:

γ(c, u)(µ)(s, other appropriate parameters)

implements l(s). Sound simple?
Once γ is achieved, the original φγ can be obtained by defining

φγ := c, u, s 7→ γ(c, u)(µ)(s, other appropriate parameters).

Now, for this to happen, we expect γ(c, u) to be of the form

m, s, x, y, ... 7→ �.

Here, let us recall the earlier temptation i.e. put something similar to

φite(c(s), φγ(c, u)(u(s)), s)

in the empty box. The difficulty of self-referencing still persists, but
this time it is not φγ but

γ(c, u)(µ, u(s), ...)

and the wind is on our favor: γ(c, u) is an object! In the context of
object-oriented programming, if one needs the reference to the object
itself in order to implement some method, what should one do? The
answer is: one passes the object as argument to the method. If one gets
this hint, a feasible solution is immediate:

µ := γ(c, u) = m, s, x 7→ φite(c(s), x(m,u(s), x), s)

with the extra x is intended to be instantiated with γ(c, u) so that the
then part of the φite i.e. x(m,u(s), x) can be interpreted as invocation
of method m of x on extra input u(s)11. Putting it all together, we get

φγ := c, u, s 7→ µ(µ, s, µ)

Exercise 10: What does µ(µ, s, µ) literally mean?
As a remark, m is never used in the above solution. Therefore, one

can obtain a simpler alternative with

γ := c, u, s, x 7→ φite(c(s), x(u(s), x), s)

µ := γ(c, u) ` s, x 7→ φite(c(s), x(u(s), x), s)

φγ := c, u, s 7→ µ(s, µ)

11Equivalent to x.m(u(s), x) in Java

16 LAWRENCE VU

by we identifying the object with the method it provides. (This is
analogous to identifying the natural number 1 with the function (+1) :
x 7→ x+ 1 as we did previously.)
Exercise 11: Implement the simple for i = 0..n loop.
Exercise 12: I define γ(c, u) to construct a while loop executor object
which has a method to invoke with some s, return l(s). If I had de-
fined γ(c, u, s) to mean an object with a method invoking which return
exactly l(s), how would the discussion have gone?
Exercise 13: Work out the example in this section. This loop is an
infinite-loop if the input value is not zero. What does it mean in λ-
calculus?
Exercise 14: Recall the functional role of natural number n is to
compute

f(f(...f︸ ︷︷ ︸
n times

(x))...)

Then one can ask: what is the corresponding functional role of the
other cardinals? The goal of this exercise is to find an expression φℵ0
of the form f 7→ � such that φℵ0(f) “intuitively computes”

f(f(...f︸ ︷︷ ︸
ℵ0 times

(x))...)

i.e. the application of ℵ0 (the cardinality of |N|) many times of f .
Hint: What does the loop while true do s = f(s) do?

Exercise 15: This exercise is inspired by Cantor’s theorem which says
that 2ℵ0 > ℵ0. We ask the computational analogue of Cantor’s theo-
rem: repeated application of a function for 2ℵ0 times is NOT compu-
tationally equivalent to application of the same function for ℵ0 times,
does

φexp(φ2, φℵ0) 6` φℵ0
or the more complicated

φexp(φℵ0 , φℵ0) 6` φℵ0
hold where φexp is previously defined to perform exponentiation for
natural numbers and φℵ0 is as in previous exercise. If it does not hold,
what does it mean? Do other theorems concerning cardinal arithmetic,
for instance,

φ+(φℵ0 , φℵ0) ` φℵ0
hold?

Note: I am looking for a soundness-style argument in logic used to
prove independence. The confusion is between ordinal and cardinal:
φexp(φ2, φℵ0) does not apply f for 2ℵ0 times! This exercise also conveys

LAMBDA CALCULUS FROM LOGICAL PERSPECTIVE 17

one message: no λ-expression can return an uncountable ordinal. I de-
fine a ordinal to be computable if it can be computed by a λ-expression.

Exercise 16: Write a program to evaluate λ-expressions i.e. recur-
sively apply the rules in definition 3 until nothing else is derivable. Use
this program to check the solutions of other exercises.
Exercise 17: Forget everything and rewrite everything from scratch.

4. Conclusion

After a laborious mental exercise, it is time to end the article with a

Definition 4. A function F : N → N is computable if and only if it
can be implemented using a λ-expression i.e. λ-definable.

The thesis of this work is, as in the introduction, λ-calculus is the
computational analogue of first-order logic. And there is still much
more to explore.

To C. B.

